1【知识要点】一、“曲线的方程”、“方程的曲线”的定义在直角坐标系中,如果曲线上的点与一个二元方程的实数解建立了如下关系:(1)曲线上的点的坐标都是这个方程的解(纯粹性);(2)以这个方程的解为坐标的点都在曲线上(完备性).那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.二、求简单的曲线方程的一般步骤:建设限代化(1)建立直角坐标系:利用垂直性和对称性建立适当的坐标系;(2)设点:用有序实数对表示曲线上任意一点的坐标(不要把其它的点的坐标设成);(3)列出动点满足的限制条件:用坐标表示条件,列出方程;(4)代点坐标到方程;(5)化简:化方程为最简形式;(6)检验:检验某些特殊点是否满足题意,把不满足的点排除,把满足的点补充上来.(可以省略)三、求轨迹方程的四种主要方法:轨迹四法待代直参(1)待定系数法:通过对已知条件的分析,发现动点满足某个曲线(圆、圆锥曲线)的定义,然后设出曲线的方程,求出其中的待定系数,从而得到动点的轨迹方程.(2)代入法:如果点的运动是由于点的运动引起的,可以先用点的坐标表示点的坐标,然后代入点满足的方程,即得动点的轨迹方程.(3)直接法:直接把已知的方程和条件化简即得动点的轨迹方程.(4)参数法:动点的运动主要是由于某个参数的变化引起的,可以选参、设参,然后用这个参数表示动点的坐标,即,再消参.四、轨迹和轨迹方程原创精品资源学科网独家享有版权,侵权必究!2轨迹和轨迹方程是两个不同的概念,轨迹表示的曲线的简单特征的描述,而求轨迹方程只求那个方程即可,不需描述曲线的特征.【方法讲评】方法一直接法使用情景已知中或图形中有动点满足的方程.解题步骤直接把动点的坐标代入已知的方程化简即可.【例1】线段与互相垂直平分于点,,,动点满足,求动点的轨迹方程.【解析】【点评】(1)这种题目由于已知中没有直角坐标系,所以首先要根据垂直性和对称性建立直角坐标系,由于建立坐标系的方法有多种,所以求出的轨迹方程有多种,但是都是对的;(2)这道题是直接用坐标化简已知中的得到的轨迹方程,运用的是直接法.原创精品资源学科网独家享有版权,侵权必究!3【例2】已知圆:,由动点向圆引两条切线、,切点分别为、,并且,求点的轨迹.【点评】(1)这道题运用的是直接法,但是它是把已知条件转化得到的一个等式,不是现存的等式.(2)轨迹和轨迹方程是两个不同的概念,轨迹包含轨迹方程和对轨迹方程表示的曲线的简单特征的描述,...