1原创精品资源学科网独家享有版权,侵权必究!第四讲不等式初中阶段已经学习了一元一次不等式和一元一次不等式组的解法.高中阶段将进一步学习一元二次不等式和分式不等式等知识.本讲先介绍一些高中新课标中关于不等式的必备知识.一、一元二次不等式及其解法1.形如的不等式称为关于的一元二次不等式.【例1】解不等式.分析:不等式左边可以因式分解,根据“符号法则---正正(负负)得正、正负得负”的原则,将其转化为一元一次不等式组.解:原不等式可以化为:,于是:或所以,原不等式的解是.说明:当把一元二次不等式化为的形式后,只要左边可以分解为两个一次因式,即可运用本题的解法.【例2】解下列不等式:(1)(2)分析:要先将不等式化为的形式,通常使二次项系数为正数.解:(1)原不等式可化为:,即于是:所以原不等式的解是.(2)原不等式可化为:,即于是:所以原不等式的解是.2.一元二次不等式与二次函数及一元二次方程的关系(简称:三个二次).2原创精品资源学科网独家享有版权,侵权必究!以二次函数为例:(1)作出图象;(2)根据图象容易看到,图象与轴的交点是,即当时,.就是说对应的一元二次方程的两实根是.(3)当时,,对应图像位于轴的上方.就是说的解是.当时,,对应图像位于轴的下方.就是说的解是.一般地,一元二次不等式可以结合相应的二次函数、一元二次方程求解,步骤如下:(1)将二次项系数先化为正数;(2)观测相应的二次函数图象.①如果图象与轴有两个交点,此时对应的一元二次方程有两个不相等的实数根(也可由根的判别式来判断).那么(图1):②如果图象与轴只有一个交点,此时对应的一元二次方程有两个相等的实数根(也可由根的判别式来判断).那么(图2):3原创精品资源学科网独家享有版权,侵权必究!无解③如果图象与轴没有交点,此时对应的一元二次方程没有实数根(也可由根的判别式来判断).那么(图3):取一切实数无解如果单纯的解一个一元二次不等式的话,可以按照一下步骤处理:(1)化二次项系数为正;[来源:学科网](2)若二次三项式能分解成两个一次因式的积,则求出两根.那么“”型的解为(俗称两根之外);“”型的解为(俗称两根之间);(3)否则,对二次三项式进行配方,变成,结合完全平方式为非负数的性质求解.【例3】解下列不等式:(1)(2)(3)解:(1)不等式可化为∴不等式的解是(2)不等式可化为∴不等式的解是(3)不等式可化为.【例4】已知对于任意实数,恒为正数,求实数的取值范围.解:显然不合题意,...