1【知识要点】证明数列不等式常用的有数学归纳法、放缩法和分析法.一、数学归纳法一般地,证明一个与自然数有关的命题,有如下步骤:(1)证明当取第一个值时命题成立.对于一般数列取值为0或1,但也有特殊情况;(2)假设当(,为自然数)时命题成立,证明当时命题也成立.综合(1)(2),对一切自然数(),命题都成立.二、放缩法证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法.放缩的技巧:①添加或舍去一些项,如:②将分子或分母放大或缩小,如:③利用基本不等式等,如:三、分析法证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法.用分析法证明时,要注意格式,一般格式是“要证明,只需证明……”.一般用分析法寻找思路,用综合法写出证明过程.【方法点评】方法一数学归纳法原创精品资源学科网独家享有版权,侵权必究!2解题步骤一般按照数学归纳法的“两步一结论”步骤来证明.【例1】用数学归纳法证明:【点评】利用数学归纳法证明不等式时,关键在于第二步,证明这一步时,一定要利用前面的假设和已知条件.【反馈检测1】已知,(其中)(1)求及;(2)试比较与的大小,并说明理由.方法二放缩法解题步骤一般放缩数列通项,或放缩求和的结果.【例2】已知函数原创精品资源学科网独家享有版权,侵权必究!3(1)当时,求函数在上的极值;(2)证明:当时,;(3)证明:.(2)令则上为增函数.(3)由(2)知令得,原创精品资源学科网独家享有版权,侵权必究!4【点评】(1)本题就是利用放缩法证明不等式,是高考的难点和重点.(2)利用放缩法证明不等式,有时需要放缩通项,有时是需要放缩求和的结果,本题两种放缩都用上了.(3)放缩要得当,所以放的度很重要,有时需要把每一项都放缩,有时需要把前面两项不放缩,后面的都放缩,有时需要把后面的项不放缩,所以要灵活调整,以达到证明的目的.学科*网【反馈检测2】已知数列满足.(1)求及通项公式;(2)求证:.【反馈检测3】将正整数按如图的规律排列,把第一行数1,2,5,10,17,记为数列,第一列数1,4,9,16,25,记为数列(1)写出数列,的通项公式;(2)若数列,的前n项和分别为,用数学归纳法证明:;(3)当时,证明:.原创精品资...