第5讲:与斜率和,斜率积有关的定点定值x0≠0,k=−y0x01.基本结论:设P(x0,y0)为椭圆x2a2+y2b2=1(a>b>0)上的定点,AB是椭圆上一条动弦,直线AB,PA,PB的斜率分别为k,k1,k2;(1)若k1k2=b2a2,则有,x0≠0,k=−y0x0(2)若k1k2≠b2a2,则直线AB过定点,(3)若k1+k2=0,则有y0≠0,k=−b2x0a2y0,(4)若k1+k2≠0,则直线AB过定点.2.典例1.(2020新高考卷)已知椭圆C:的离心率为,且过点.(1)求的方程:(2)点,在上,且,,为垂足.证明:存在定点,使得为定值.解析:(1)由题意可得:,解得:,故椭圆方程为:.(2)设点,若直线斜率存在时,设直线的方程为:,代入椭圆方程消去并整理得:,可得,,因为,所以,即,根据,代入整理可得:,所以,整理化简得,因为不在直线上,所以,故,于是的方程为,所以直线过定点直线过定点.当直线的斜率不存在时,可得,由得:,得,结合可得:,解得:或(舍).此时直线过点.令为的中点,即,若与不重合,则由题设知是的斜边,故,若与重合,则,故存在点,使得为定值.典例2.(2018年1卷)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;(2)设为坐标原点,证明:.解析:(1)由已知得,l的方程为.由已知可得,点的坐标为或.所以的方程为或.(2)当与轴重合时,.当与轴垂直时,为的垂直平分线,所以.当与轴不重合也不垂直时,设的方程为,,则,直线、的斜率之和为.由得.将代入得.所以,.则.从而,故、的倾斜角互补,所以.综上,.典例3.(2017一卷)已知椭圆C:x2a2+y2b2=1(a>b>0),四点P1(1,1),P2(0,1),P3(−1,√32),P4(1,√32)中恰有三点在椭圆C上.(1)求椭圆C的方程;(2)设直线l不经过P2点且与C相交于A,B两点,若直线P2A,P2B的斜率之和为−1,证明:直线l过定点.解析:(1)由于,两点关于y轴对称,故由题设知C经过,两点.又由知,C不经过点P1,所以点P2在C上.因此,解得.故C的方程为.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t,),(t,).则,得,不符合题设.从而可设l:().将代入得,由题设可知.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.而.由题设,故.即.解得.当且仅当时,,欲使l:,即,所以l过定点(2,)