原创精品资源学科网独家享有版权,侵权必究!1/11学科网(北京)股份有限公司学科网(北京)股份有限公司第04讲基本不等式及其应用目录原创精品资源学科网独家享有版权,侵权必究!2/11学科网(北京)股份有限公司学科网(北京)股份有限公司考点要求考题统计考情分析(1)了解基本不等式的推导过程.(2)会用基本不等式解决简单的最值问题.(3)理解基本不等式在实际问题中的应用.2022年II卷第12题,5分2021年乙卷第8题,5分2020年天津卷第14题,5分高考对基本不等式的考查比较稳定,考查内容、频率、题型难度均变化不大,应适当关注利用基本不等式大小判断、求最值和求取值范围的问题.1、基本不等式如果,那么,当且仅当时,等号成立.其中,叫作的算术平均数,叫作的几何平均数.即正数的算术平均数不小于它们的几何平均数.基本不等式1:若,则,当且仅当时取等号;基本不等式2:若,则(或),当且仅当时取等号.注意(1)基本不等式的前提是“一正““二定““三相等“;其中“一正“指正数,“二定“指求最值时和或积为定值,“三相等“指满足等号成立的条件.(2)连续使用不等式要注意取得一致.【解题方法总结】1、几个重要的不等式(1)(2)基本不等式:如果,则(当且仅当““时取““).特例:(同号).原创精品资源学科网独家享有版权,侵权必究!3/11学科网(北京)股份有限公司学科网(北京)股份有限公司(3)其他变形:①(沟通两和与两平方和的不等关系式)②(沟通两积与两平方和的不等关系式)③(沟通两积与两和的不等关系式)④重要不等式串:即调和平均值几何平均值算数平均值平方平均值(注意等号成立的条件).2、均值定理已知.(1)如果(定值),则(当且仅当““时取“=”).即“和为定值,积有最大值“.(2)如果(定值),则(当且仅当““时取“=”).即积为定值,和有最小值“.3、常见求最值模型模型一:,当且仅当时等号成立;模型二:,当且仅当时等号成立;模型三:,当且仅当时等号成立;模型四:,当且仅当时等号成立.题型一:基本不等式及其应用【解题方法总结】熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.例1.(2023·辽宁·校联考二模)数学命题的证明方式有很多种.利用图形证明就是一种方式.现有如图所原创精品资源学科网独家享有版权,侵权必究!4/11学科网(北京)股份有限公司学科网(北京)股份有限公司示图形,在等腰直角三角...