9.1.2分层随机抽样新知探索抽样调查最核心的问题是样本的代表性.简单随机抽样是使总体中每一个个体都有相等的机会被抽中,但因为抽样的随机性,有可能会出现比较“极端”的样本.例如,在对树人中学高一年级学生身高的调查中,可能出现样本中50个个体大部分来自高个子或矮个子的情形.这种“极端”样本的平均数会大幅度的偏离总体平均数,从而使得估计出现较大的误差.能否利用总体中的一些额外信息对抽样方法进行改进呢?新知探索问题3:在树人中学高一年级的712名学生中,男生有326名,女生有386名.能否利用这个辅助信息改进简单随机抽样方法,减少“极端”样本的出现,从而提高对整个年级平均身高的估计效果呢?我们知道,影响身高的因素有很多,性别是其中的一个主要因素.高中男生的身高普遍高于女生的身高,而相同性别的身高差异相对较小.我们可以利用性别和身高的这种关系,把高一年级学生分成男生和女生两个身高有明显差异的群体,对两个群体分别进行简单随机抽样,然后汇总作为总体的一个样本.由于在男生和女生两个群体中都抽取了相应的个体,这样就能有效地避免“极端”样本.新知探索思考1:对男生、女生分别进行简单随机抽样,样本量在男生、女生中应该如何分配?新知探索新知探索女生163.0164.0161.0157.0162.0165.0158.0155.0164.0162.5154.0154.0164.0149.0159.0161.0170.0171.0155.0148.0172.0162.5158.0155.5157.0163.0172.0新知探索上面我们按性别变量,把高一学生划分为男生、女生两个身高差异较小的子总体分别进行抽样,进而得到总体的估计.一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.新知探索新知探索新知探索思考1:与考察简单随机抽样估计效果类似,小明也想通过多次抽样考察一下分层随机抽样的估计效果.他用比例分配的分层随机抽样方法,从高一年级的学生中抽取了10个样本量为50的样本,计算出样本平均数如表所示,与上一小节“思考”中相同样本量的简单随机抽样的结果比较,小明有一个重要的发现,你是否也有所发现?新知探索我们把分层随机抽样的平均数与上一小节样本量为50的简单随机抽样的平均数用图形进行表示,其中红线表示整个年级学生...