第七章随机变量及其分布7.4二项分布与超几何分布7.4.1二项分布三门启超中学:刘雨萌学习目标1.理解n重伯努利试验模型.2.理解二项分布.3.能运用n重伯努利试验模型及二项分布解决一些简单的实际问题三门启超中学:刘雨萌x1p1+x2p2+…+xipi+…+xnpni=1nxipi1.离散型随机变量的均值的概念则称E(X)==为随机变量X的均值或数学期望.3.一般地,如果随机变量X服从两点分布,那么:X10Pp1-p4.离散型随机变量的均值、方差的性质若Y=aX+b,其中a,b均是常数(X是随机变量),则Y也是随机变量,且有E(aX+b)=.22211()()()()iinnDXxEXpxEXpxEXpniiipEXx12)(22()(())EXEX2.离散型随机变量的方差的概念D(X)=(0-p)2(1-p)+(1-p)2p=p(1-p).D(aX+b)=a2D(X)aE(x)+b知识回顾三门启超中学:刘雨萌问题探究问题1:伯努利试验在实际问题中,有许多随机试验与掷硬币试验具有相同的特征,它们只包含两个可能结果.例如,检验一件产品结果为合格或不合格,飞碟射击时中靶或脱靶,医学检验结果为阳性或阴性等.我们把只包含两个可能结果的试验叫做伯努利试验(Bernoullitrials).我们将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验。显然,n重伯努利试验具有如下共同特征:(1)同一个伯努利试验重复做n次;(概率相同)三门启超中学:刘雨萌做一做:下面3个随机试验是否为n重伯努利试验?如果是,那么其中的伯努利试验是什么?对于每个试验,“”定义成功的事件为A,那么A的概率是多大?重复试验的次数是多少?1.抛掷一枚质地均匀的硬币10次.2.某飞碟运动员每次射击中靶的概率为0.8,连续射击3次.3.一批产品的次品率为5%,有放回地随机抽取20件.问题探究随机试验是否为n重伯努利试验伯努利试验P(A)重复试验的次数123是是是抛掷一枚质地均匀的硬币某飞碟运动员进行射击从一批产品中随机抽取一件0.50.80.9510320三门启超中学:刘雨萌问题探究探究1:伯努利试验和n重伯努利试验有什么不同?“”伯努利试验是一个有两个结果的试验,只能关注某个事件发生或不发生;n“”重伯努利试验是对一个有两个结果的试验重复进行了n次,所以关注点是这n“”次重复试验中发生的次数X.进一步地,因为X是一个离散型随机变量,所以我们实际关心的是它的概率分布列.思考:姚明作为中锋,他职业生涯的罚球命中率为0.8,假设他每次命中率相同,请问他4投1中的概率是多少?三门启超中学:刘雨萌思考:在4次投篮中姚明恰好命中1次的概率是多少?...