人教A版2019选择性必修第三册1.进一步理解和掌握分类加法计数原理和分步乘法计数原理;2.能应用两个计数原理解决实际问题.学习目标完成一件事情,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有mn种不同的方法.那么完成这件事共有N=m1+m2++⋅⋅⋅m��种不同的方法.1.分类加法计数原理2.分步乘法计数原理完成一件事情,需要分成n个步骤:做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有mn种不同的方法.那么完成这件事共有N=m1×m2×…×mn种不同的方法.分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法的种数问题.区别在于:分类加法计数原理:针对的是"分类"问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理:针对的是"分步"问题,各个步骤中的方法互相依存,只有各个步骤都完成才算做完这件事.环节一:创设情境,引入课题2.区别分类加法计数原理分步乘法计数原理区别一完成一件事共有n类办法,关键词是“分类”完成一件事共有n个步骤,关键词是“分步”区别二每类办法中的每种方法都能独立地完成这件事,它是独立的、一次的且每种方法得到的都是最后结果,只需一种方法就可完成这件事除最后一步外,其他每步得到的只是中间结果,任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有各个步骤都完成了,才能完成这件事区别三各类办法之间是互斥的、并列的、独立的各步之间是关联的、独立的,“关联”确保不遗漏,“独立”确保不重复两个原理的联系与区别1.联系:分类加法计数原理和分步乘法计数原理都是解决计数问题最基本、最重要的方法.例4要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,共有多少种不同的挂法?分析:要完成的一件事是“从3幅画中选出2幅,并分别挂在左、右两边墙上”,可以分步完成.解:从3幅画中选出2幅分别挂在左、右两边墙上,可以分两个步骤完成:第1步,从3幅画中选1幅挂在左边墙上,有3种选法;第2步,从剩下的2幅画中选1幅挂在右边墙上,有2种选法.,326.66.12.N根据分步乘法计数原理不同挂法的种数为这种挂法如图所示环节二:观察分析,感知概念分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题.区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数...