1原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司5.3诱导公式第1课时公式二、公式三和公式四【学习目标】课程标准学科素养1.了解公式二、公式三和公式四的推导方法.2.能够准确记忆公式二、公式三和公式四.(重点)3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题.(难点)1.逻辑推理2.数学运算【自主学习】终边关系图示公式作用公式二角π+α与角α的终边关于原点对称sin(π+α)=cos(π+α)=tan(π+α)=将π~2π的角的三角函数转化为0~π的角的三角函数公式三角-α与角α的终边关于x轴对称sin(-α)=cos(-α)=tan(-α)=将负角的三角函数转化为正角的三角函数公式四角π-α与角α的终边关于y轴对称sin(π-α)=cos(π-α)=tan(π-α)=将~π的角的三角函数转化为0~的角的三角函数思考1:诱导公式中角α只能是锐角吗?思考2:诱导公式一~四改变函数的名称吗?【小试牛刀】思考辨析(正确的画“√”,错误的画“×”)(1)公式二~四对任意角α都成立.()(2)由公式三知cos[-(α-β)]=-cos(α-β).()(3)公式sin(-α)=-sinα,α是锐角才成立.()(4)cos=-.()2原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司(5)在△ABC中,sin(A+B)=sinC.()【经典例题】题型一给角求值点拨:利用诱导公式求任意角三角函数值的步骤1.“负化正”——用公式一或三来转化;2.“大化小”——用公式一将角化为0°到360°间的角;3.“小化锐”——用公式二或四将大于90°的角转化为锐角;4.“锐求值”——得到锐角的三角函数后求值.例1利用公式求下列三角函数值:(1)sin(-1200°);(2)tan945°;(3)cos.【跟踪训练】1利用公式求值:(1)cos+cos+cos+cos;(2)sin(-60°)+cos225°+tan135°.题型二利用诱导公式化简点拨:三角函数式化简的常用方法1.合理转化:(1)将角化成2kπ±α,kπ±α,k∈Z的形式.(2)依据所给式子合理选用诱导公式将所给角的三角函数转化为角α的三角函数.2.切化弦:一般需将表达式中的切函数转化为弦函数.例2化简下列各式.(1);(2).【跟踪训练】2化简(1);(2).3原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司题型三给值求值点拨:1.解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.2.可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.例3已知cos=,求下列各式的值....