选修第二册《第五章一元函数的导数及其应用》5.2.2导数的四则运算法则新知:导数的四则运算法则);()()]'()([xgxfxgxf①)(])([:xfcxcf推论即求导时,常系数可提出.可推广至n项xyxy12',6:2则如23',3xyxy则0)(,)]([)(')()()(')()(2xgxgxgxfxgxfxgxf③分别求导);()()()()]'()([xgxfxgxfxgxf②轮流求导xyxy2',ln2则,43:2xxy如.32'xy则巩固1:利用导数的四则运算法则求导xxey)1(xxyln)5(求下列函数的导数.1xytan)4(xxxy)2()2(2xxxexxeey)1(':析,2:2325xxy析.325325'32123xxxxy,cossin:xxy析.cos1cos)sin(sincoscos'22xxxxxxy.ln1ln1':22xxxxxxy析)1)(2()3(xxxy),1)(2(:2xxxy析.223)2()1)(22('22xxxxxxy巩固2:抽象函数的导数.______)1(_____,)1('______,)3(',ln3)3('2)(),(')(.22gggxxgxxgxgxg则且满足的导函数为已知函数,3)3('22)(':xgxxg析,1)3('26)3('gg,7)3('gxg)3('2.)()1(),1('2ln)(][的大小和试比较已知函数变式effxfxxxf),1('2ln1)(':2fxxxf析.1)1('),1('21)1('fff,21)(,2)1(eeeff,0221)1()(eefef).1()(fef.93142)1('g.13141)1(g升级巩固.___________)2(,0)(,sin)(')(,sincos)('cos)(.3ggxxxgxgxxxxfxxxf则且的导函数若的导函数为已知函数),('cos)(':xgxxf依题意得析),('cos)('xfxxg即,cossin)(sin)(cxxxcxfxxg,0cossin)(ccg.32cos22sin)2(g,c.____________)(,34)('xgxxg则若.____________)(,1cos)('xgxxxg则若2x2+3x+csinx-lnx+c目的:求g(x)巩固3:导数几何意义的应用.________,1)(ln)(.3的值为则实数相切的图象与直线已知函数axyRaaxxxf,1)(':axxf析),ln,(000axxxP设切线为,11)('00axxfk切,ln11000axxxxyP得代入将点①②110ax0ln1)1(00xxa2ln0x20ex112ea.112ea联立①②解得巩固4:函数性质与导数的结合的值域的交集为与析)(')(':xgxfaexfx2)('axxxg23)('2a232aaa23206a),2()('axf3,)('2axg.________),(')(',,.)(...