第1页共5页新教材数学研修班训练营专家引领•名校参与•名师共创原创精品资源学科网与作者共同享有版权,侵权必究!学科网(北京)股份有限公司课题:5.2.1三角函数的概念教学设计(第1课时)(一)教学内容任意角的三角函数概念.(二)教学目标通过数学抽象,能够将匀速圆周运动归结到单位圆上的点的运动规律的刻画,借助单位圆上点的坐标定义三角函数,进而建立三角函数的概念,体会数形结合思想方法的作用,发展直观想象、数学抽象等核心素养.(三)教学重点及难点1.教学重点:任意角的三角函数概念.2.教学难点:如何建立任意角的三角函数概念.(四)教学过程设计引导语:现实世界中存在着各种各样的“周而复始”的变化现象,圆周运动是这类现象的代表,如右图1所示,☉上的点以为起点做逆时针旋转,在弧度制下,我们已经将角的范围扩展到全体实数,能否建立一个函数模型,刻画点的位置变化情况?师生活动:教师提出问题,学生独立思考后,在已有的研究函数的经验基础上能够给出研究路径:明确研究背景--对应关系的特点分析--下定义--性质.追问:要解决这个问题,我们需要什么工具?学生能够说出建立函数模型,需要利用直角坐标系,并先研究单位圆上点的运动,如图,以单位圆的圆心为坐标原点,以射线为轴的非负半轴,建立直角坐标系,点的坐标是,点的坐标是.把该问题抽象为一个质点从点开始在单位圆上的运动.问题1:当时,点P的坐标是什么?当或时,点P的坐标又是什么?它们是唯一确定的吗?师生活动:教师提出问题后,学生进行讨论.利用勾股定理可以发现,当=时,点的坐标是(❑√32,12);当或时,点的坐标分别是(0,1)和(−12,❑√32).它们都是唯一确定的.设计意图:先研究特殊角下点坐标,再研究任意角下点坐标.体现由特殊到一般的思想.问题2:一般地,任意给定一个角,它的终边与单位圆交点的坐标能唯一确定吗?师生活动:教师提出问题后,学生进行讨论.因为单位圆的半径不变,点的坐标只与角的大小有关,当角确定时,点的坐标是也唯一确定.追问1:用GGB动态展示角变化的过程,观察角的终边与单位圆的交点的坐标,有什么发现?能运用函数的语言刻画这种对应关系吗?图1第2页共5页新教材数学研修班训练营专家引领•名校参与•名师共创原创精品资源学科网与作者共同享有版权,侵权必究!学科网(北京)股份有限公司师生活动:对任意一个实数,它的终边与单位圆的交点的横、纵坐标都是唯一确定的,有如下对应关系:任意角(弧度)→唯一实数...