《应用一元一次方程—追赶小明》教案教学目标1.能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题.熟悉行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换.2.经历画“线段图”找等量关系,列出方程解决问题的过程,进一步体验画“线段图”也是解决实际问题的有效途径.3.体会“方程”是解决实际问题的有效模型,并进一步发展学生的文字语言、符号语言、图形语言的转换能力.教学重点和难点重点:能列出一元一次方程解决实际问题.难点:利用线段图找到题中的等量关系.教学过程一、复习引入1、问答题(1)小明家离学校有1000米,他骑车的速度是25米/分,那么小明从家到学校需___小时.(2)甲、乙两地相距1600千米,一列火车从甲地出发去乙地,经过16小时,距离乙地还有240千米.这列火车每小时行驶多少千米?2、抢答题(1)用一元一次方程解决问题的基本步骤:____________.(2)行程问题主要研究、三个量的关系.路程=_____,速度=_____,时间=_____.(3)若小明每秒跑4米,那么他10秒跑___米.二、自主学习例:小明早晨要在7:50以前赶到距家1000米的学校上学,一天,小明以80m/min的速度出发,5min后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180m/min的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?独立思考,完成上面的问题.1、根据题目已知条件,画出线段图:2、找出等量关系:小明走过的路程=爸爸走过的路程.3、板书规范写出解题过程:解:(1)设爸爸追上小明用了xmin.根据题意,得80×5+80x=180x化简得100x=400.解得,x=4.因此,爸爸追上小明用了4min.(2)180×4=720(m)1000-720=280(m)所以,追上小明时,距离学校还有280米.(学生独立完成,找到等量关系并列出方程,教师巡视学生并给予检查和指导.请书写规范的学生到前面板演,并讲解其解题思路,其他同学对照黑板谈谈自己的不足之处.)分析出发时间不同的追及问题,能画出线段图,进行图形语言、符号语言与文字语言之间的相互转化,理解题中的等量关系,培养学生思维的灵活性,进一步列出方程,解决问题,既能娴熟使用“线段图”又能利用方程的思想解决问题.三、交流探究甲、乙两站间的路程为450千米,一列快车从甲站开出,每小时行驶85千米,一列慢车从乙站开出,每小时行驶65千米.设两车同时开出,同向而行,则快车几小时后追上慢车?(学生小组合作完成本题目,按照例题的方法步骤,通过画线段图...