《1.2展开与折叠(2)》教案教学重点与难点教学重点:能将长方体、棱柱、圆柱、圆锥展开成平面图形;并由它们的平面图形折叠成立体图形.教学难点:将平面图形折叠成棱柱.学情分析认知基础:学生对于长方体、棱柱、圆柱、圆锥的相关概念已经有了初步的认识,通过上一节课对正方体的展开与折叠的学习,空间观念得到进一步的提升,初步体会到了几何体与平面展开图之间的转化关系.活动经验基础:作为展开与折叠的第2课时,学生积累了一定的操作、想象、归纳的经验.教学目标1.经历展开与折叠、模型制作等活动,发展学生的空间观念,使学生积累数学活动经验.2.在平面图形与几何体相互转换等活动过程中,发展空间观念.3.培养学生动手操作的能力,引导学生自己发现棱柱的特征.教学方法采用了比较开放的教学方式,尽量调动学生的主观能动性,教师设置合理的教学平台,学生在平台上自主地进行探索和研究.教学过程一、引入新课设计说明让学生自己动手收集材料,倡导他们热爱社会、热爱自然、热爱生活,并激起他们探究的兴趣.上节课我们探究了正方体的展开与折叠,现在你能将棱柱(三棱柱、四棱柱、五棱柱…)、圆柱、圆锥展开或折叠吗?教学说明从学生收集的包装盒中选一些向学生们展示,指出我们生活中常见的包装盒—长方体,它是属于棱柱的,今天我们就从最常见的棱柱入手,来研究,既激发了学生的求知欲,又自然地引出了课题.二、讲授新课1.探索归纳棱柱的性质设计说明从学生的观察入手,利用提问的形式,引导学生去归纳总结棱柱的性质.我们在研究某个几何体的展开与折叠之前应该了解它们的性质.这时将棱柱的模型展示给学生,包括三棱柱、四棱柱、五棱柱等,并利用模型向学生介绍各部分的名称.然后提出以下问题:(1)三棱柱的上、下底面都一样吗?它们各有几条边?四棱柱、五棱柱呢?(2)三棱柱有几个侧面?侧面是什么图形?四棱柱、五棱柱呢?(3)这三种棱柱侧面的个数与底面多边形的边数有什么关系?(4)三棱柱有几条侧棱?它们的长度之间有什么关系?四棱柱、五棱柱呢?(5)请你将下表补全.三棱柱四棱柱五棱柱六棱柱……n棱柱棱数侧棱数面数侧面数以上问题要求通过观察或者测量模型,先独立思考后,以小组为单位,讨论完成,再集体完成填表向全班展示,最后教师引导学生总结出棱柱的有关性质.教学说明这一部分的内容完全可以让学生独立完成,问题比较明确,引导性很强.在思考回答问题的同时对棱柱的性质进行了研究.设计填表的目的是为了培...