学霸网https://www.xue-ba.org收集整理第1页共4页学霸网https://www.xue-ba.org收集整理第7讲导数的应用问题函数的单调性、极值、最值问题例8已知函数f(x)=(x∈R),其中a∈R.(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≠0时,求函数f(x)的单调区间与极值.审题破题(1)直接求f′(x),得f′(2)后写出切线方程;(2)求导函数f′(x)后要对a进行讨论,可以列表观察函数f(x)的单调性,极值.解(1)当a=1时,f(x)=,f(2)=,又f′(x)==,f′(2)=-.所以,曲线y=f(x)在点(2,f(2))处的切线方程为y-=-(x-2),即6x+25y-32=0.(2)f′(x)==.由于a≠0,以下分两种情况讨论.①当a>0,令f′(x)=0,得到x1=-,x2=a.当x变化时,f′(x)和f(x)的变化情况如下表:x(-∞,-)-(-,a)a(a,+∞)f′(x)-0+0-f(x)极小值极大值所以f(x)在区间,(a,+∞)内为减函数,在区间内为增函数.函数f(x)在x1=-处取得极小值f,且f=-a2.函数f(x)在x2=a处取得极大值f(a),且f(a)=1.②当a<0时,令f′(x)=0,得到x1=a,x2=-,当x变化时,f′(x)和f(x)的变化情况如下表:x(-∞,a)a(a,-)-(-,+∞)f′(x)+0-0+f(x)极大值极小值所以f(x)在区间(-∞,a),内为增函数,在区间内为减函数.函数f(x)在x1=a处取得极大值f(a),且f(a)=1.函数f(x)在x2=-处取得极小值f(-),学霸网https://www.xue-ba.org收集整理第2页共4页学霸网https://www.xue-ba.org收集整理且f=-a2.综上,当a>0时,函数f(x)的单调递增区间为(-,a),单调递减区间为(-∞,-),(a,+∞),极大值为1,极小值为-a2.当a<0时,函数f(x)的单调递增区间为(-∞,a),(-,+∞),单调递减区间为(a,-),极大值为1,极小值为-a2.构建答题模板第一步:确定函数的定义域.如本题函数的定义域为R.第二步:求f(x)的导数f′(x).第三步:求方程f′(x)=0的根.第四步:利用f′(x)=0的根和不可导点的x的值从小到大顺次将定义域分成若干个小开区间,并列出表格.第五步:由f′(x)在开区间内的正、负值判断f(x)在开区间内的单调性.第六步:明确规范地表述结论.第七步:反思回顾.查看关键点、易错点及解题规范.如本题中f′(x)=0的根为x1=-,x2=a.要确定x1,x2的大小,就必须对a的正、负进行分类讨论.这就是本题的关键点和易错点.跟踪训练8已知函数f(x)=alnx++x(a≠0).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x-2y=0垂直,求实数...