总练习题六(1)1.填空题(1)设D为yx与3yx所围成的在第一象限内的闭区域,则ddDxy;(2)交换积分次序220d()daaxxxxfxyy,;(3)设22{()|2}Dxyxyy,,则1ddDxyy;(4)设2{()|020}xyzyxxza,,,,则22dzxyv;(5)设22211{()|()}24xyzxyz,,,则()dfxyzv,,在球坐标系中的三次积分为;289a14220d()dayaayyfxyx,2π2πcos22000dd(sincos,sinsin,cos)sindfrrrrr6.设2222{()|}xyzxyza,,,计算222()dlxmynzv(其中l、m、n为常数).2222()d()dlxmynzvlmnzv解由轮换对称性2022205()dd()()d4π()15zaDalmnzxylmnzazzalmn2222:zDxyaz9.设球体222xyzz上任一点处的密度等于该点到原点的距离的平方,求此球体的质心.22222211:24[]xkxyzyz密度函数解2222220,0,[][]xdVydVxydVdVzdVkzxyzdVzdVkxyzdV2222cos420002222cos426000sin1581cossin325858xyzdVddrdrzxyzdVddrrdrz重心坐标为0,0,12.设(,)fxy在0,0,上连续,且恒取正值,试求100limsin(,)nnxyxfxyd.解:因为(,)0,0,,(,)0fxyCfxy且1122(,),(,)0,0,,xyxy使得1(,)nnnmfxyM所以从而由重积分的性质,有11(,)0,0,22(,)0,0,(,)=min(,):,(,)=max(,):xyxyfxyfxymfxyfxyM1000000sinsin(,)sinnnnxxxyyymxdxfxydMxd1002sin(,)2nnnxymxfxydMlimlim1nnnnMm100limsin(,)2nnxyxfxyd由夹逼性,14.设221()txftedx,求10()tftdt.2211001()=ddtxtftdtttex提示更换积分次序22101=ddtxttex22110=ddxtttex2100=ddxxextt11(1)4e