§5.3协整与误差修正模型一、长期均衡关系与协整二、协整的检验三、关于均衡与协整的再讨论四、误差修正模型一、长期均衡与协整分析EquilibriumandCointegration1、问题的提出•经典回归模型(classicalregressionmodel)是建立在平稳数据变量基础上的,对于非平稳变量,不能使用经典回归模型,否则会出现虚假回归等诸多问题。•由于许多经济变量是非平稳的,这就给经典的回归分析方法带来了很大限制。•但是,如果变量之间有着长期的稳定关系,即它们之间是协整的(cointegration),则是可以使用经典回归模型方法建立回归模型的。•例如,中国居民实际消费水平与实际收入水平变量,从经济理论上说,居民收入决定着居民消费水平,它们之间有着长期的稳定关系,即它们之间是协整的。•经济理论指出,某些经济变量间确实存在着长期均衡关系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。假设X与Y间的长期“均衡关系”由式描述2、长期均衡tttXY10该均衡关系意味着:给定X的一个值,Y相应的均衡值也随之确定为0+1X。•在t-1期末,存在下述三种情形之一:–Y等于它的均衡值:Yt-1=0+1Xt-1;–Y小于它的均衡值:Yt-1<0+1Xt-1;–Y大于它的均衡值:Yt-1>0+1Xt-1;•在时期t,假设X有一个变化量Xt,如果变量X与Y在时期t与t-1末期仍满足它们间的长期均衡关系,即上述第一种情况,则Y的相应变化量为:11,ttttttYXv•如果t-1期末,发生了上述第二种情况,即Y的值小于其均衡值,则t期末Y的变化往往会比第一种情形下Y的变化大一些;•反之,如果t-1期末Y的值大于其均衡值,则t期末Y的变化往往会小于第一种情形下的Yt。•可见,如果Yt=0+1Xt+t正确地提示了X与Y间的长期稳定的“均衡关系”,则意味着Y对其均衡点的偏离从本质上说是“临时性”的。•一个重要的假设就是:随机扰动项t必须是平稳序列。如果t有随机性趋势(上升或下降),则会导致Y对其均衡点的任何偏离都会被长期累积下来而不能被消除。•Yt=0+1Xt+t中的随机扰动项也被称为非均衡误差(disequilibriumerror),它是变量X与Y的一个线性组合:tttXY10•如果X与Y间的长期均衡关系正确,该式表述的非均衡误差应是一平稳时间序列,并且具有零期望值,即是具有0均值的I(0)序列。•非平稳的时间序列,它们...