第二章电路的分析方法2.1.1在图2.01的电路中,V6=E,Ω=61R,Ω=32R,Ω=43R,Ω=34R,Ω=15R。试求3I和4I。1R2R3R4R5R4I↓3I↓E+-图2.01解:图2.01电路可依次等效为图(a)和图(b)。2R3R4R5R4I↓3I↓+−Ea1R(a)bI5R+−ER(b)Ω=+×=+×=23636414114RRRRRΩ=+++×=+++×=2243)24(3)(14321432RRRRRRRA22165=+=+=RREIA322363)(214323=×+=++=IRRRRIA943263631414−=×+−=+−=IRRRI2.3.3计算图2.12中的电流3I。V1U1=Ω=1R1Ω=1R2Ω=1R3A2IS=Ω=1R4+-图2.123I解:根据电压源与电流源的等效变换,图2.12所示电路可依次等效为图(a)和图(b),由图(b)可求得A2.15.023=+=I由图(a)可求得:A6.02.121213=×==IIVU11=+−Ω=11RΩ=12RΩ=13RV2U2=Ω=14R−+3I(a)Ω=2RI(b)+−Ω=12RΩ=13R3IV3U=2.6.1在图2.19中,(1)当将开关S合在a点时,求电流1I,2I和3I;(2)当将开关S合在b点时,利用(1)的结果,用叠加定理计算电流321,III和。Ω4abSV20Ω2V120V130Ω23I1I2I+-+-+-图2.19Ω4Ω2V120V130Ω23I1I2I+-+-(a)Ω4Ω2V20Ω23I1I2I+-(b)解:(1)当将开关S合在a点时,图2.19所示电路即为图(a),用支路电流法可得:=+=+=+12042130423231321IIIIIII解得:===A25A10A15321III(2)开关S合在b点时,利用叠加原理图2.19所示电路可等效为图(a)和图(b),其中图(a)电路中130V和120V两个电压源共同作用时所产生的电流已在(1)中求得,即:A151=,IA102=,IA253=,I由图3(b)可求得:A642422202=+×+=,,IA464241−=×+−=,,IA26422,,3=×+=I则:A11415111=−=+=,,,IIIA16610,222=+=+=,,IIIA27225333=+=+=,,,III2.6.2电路如图2.20(a)所示,V10ab,,V124321=====URRRRE。若将理想电压源除去后[图2.20(b)]。试问这时abU等于多少?1R2R3R4RIab+−EI图2.20(a)1R2R3R4RIabI图2.20(b)解:当电压源单独作用时,图2.20所示电路如图4所示,1R3R4Ra+−Eb2R图4这时:V3124141ab=×==EU,根据叠加原理,电流源单独作用时:V7310ababab=−=−=,,,UUU2.7.4在图2.24中,(1)当开关S断开时,试求电阻5R上的电压5U和电流5I;(2)当开关S闭合后,试用戴维宁定理计算5I。已知Ω=Ω=======10,1,V4,V13,V1554321321RRRRREEE。1E2E3E5U1R2R3R4RS5I5R图2.24+-+-+-+-解:(1)当开关S断开时05=U05=I(2)当开关S闭合时,图2.24所示电路5R左右两侧可得两个有源二端网络,如图(a)所示。1E2E3E1R2R3R4R(a)+-+-+-abc++−−−01U02U5U01R02R5I5R(b)+根据戴维宁...