猛氏数学2015.5.5排列组合题型总结排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。一.直接法1.特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。分析:(1)个位和千位有5个数字可供选择25A,其余2位有四个可供选择24A,由乘法原理:25A24A=2402.特殊位置法(2)当1在千位时余下三位有35A=60,1不在千位时,千位有14A种选法,个位有14A种,余下的有24A,共有14A14A24A=192所以总共有192+60=252二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法2435462AAA=252例2有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352AC个,其中0在百位的有2242C22A个,这是不合题意的。故共可组成不同的三位数333352AC-2242C22A=432(个)三.插空法当需排元素中有不能相邻的元素时,宜用插空法。例3在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019AA=100中插入方法。四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。例44名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A种排法,而男生之间又有44A种排法,又乘法原理满足条件的排法有:44A×44A=576练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有种(3324AC)2.某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129AC)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C其余的就是19所学校选28天进行排列)君君辅导君君辅导猛氏数学2015.5.53,52,4五....