1四则运算法则第二节函数的求导法则反函数的求导法则基本求导法则与导数公式复合函数的求导法则2定理1,)(),(处可导在点如果函数xxvxu])()([)1(xvxu并且则它们的线性组合、积、商在点x处也可导,);()(xvxu])()([)2(xvxu);()()()(xvxuxvxu)()()()()(2xvxvxuxvxu函数的求导法则).0)((xv.,R一、四则运算法则)()()3(xvxu3)()(xvxu).0)(()()()()()(2xvxvxvxuxvxu,1vuy设证.11可导在点可导,现证在点已知xvfxuhxvhxvhxfhxf)(1)(1)()(11)()(1)()(xvhxvhxvhxv有的可导性及在点由0)()(xvxxv)()(')()(lim)('21101xvxvhxfhxfxfh211'''''vuvvuuffuvu函数的求导法则4函数的求导法则特别)(1xv)()(2xvxv5函数的求导法则推广1:,处均可导在点、、若xwvuwvuRCCuCu即常数在求导中可提出,,')'(uvw,wvu则,处也可导在同一点x且uvwvwwvuwuvuvwu注:线性组合及乘积运算可推广到有限个函数的情形推论2;)(])([)1(11niiniixfxf);(])([)2(xfCxCf;)()()()()()()()(])([)3(1121211ninikkkinnniixfxfxfxfxfxfxfxfxf7例.tan的导数求xy解)(tanxyx2cosxxx222cossincosxx22seccos1.sec)(tan2xx)(cotx同理可得xxcossin即.csc2x2vvuvuvu函数的求导法则)(cossinxxxxcos)(sin8例.sec的导数求xy解)cos1()(secxxyxx2cos)(cos.tansecxxxx2cossin同理可得)(1xv)()(2xvxv即xxxtansec)(sec函数的求导法则xxxcotcsc)(csc×9例32()593()fxxxxfx若,求解32()()5()9()(3)fxxxx235290xx1110()nnnnnPxaxaxaxa注:若23109xx则1211()(1)nnnnnPxnaxnaxa函数的求导法则10练习.ln2sin的导数求xxy解xxxylncossin2xxxylncoscos2xxxln)sin(sin2xxx1cossin2.2sin1ln2cos2xxxx函数的求导法则11.11的导数求xxy解法一2)1()1)(1()1()1(xxxxxy2)1(2x法二11xxy121x)12()1(xy2)1(2x注在进行求导运算中,且...