专题11平面向量1.【2021·浙江高考真题】已知非零向量,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】B【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】若,则,推不出;若,则必成立,故“”是“”的必要不充分条件故选:B.2.【2021·全国高考真题】已知为坐标原点,点,,,,则()A.B.C.D.【答案】AC【分析】A、B写出,、,的坐标,利用坐标公式求模,即可判断正误;C、D根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A:,,所以,,故,正确;B:,,所以同理,故不一定相等,错误;C:由题意得:,,正确;D:由题意得:,,故一般来说故错误;故选:AC3.【2020年高考全国III卷理数】6.已知向量a,b满足,,,则A.B.C.D.【答案】D【解析】,,,.,因此,.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.4.【2020年新高考全国Ⅰ卷】已知P是边长为2的正六边形ABCDEF内的一点,则的取值范围是A.B.C.D.【答案】A【解析】如图,的模为2,根据正六边形的特征,可以得到在方向上的投影的取值范围是,结合向量数量积的定义式,可知等于的模与在方向上的投影的乘积,所以的取值范围是,故选:A.【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.5.【2019年高考全国I卷理数】已知非零向量a,b满足,且b,则a与b的夹角为A.B.C.D.【答案】B【解析】因为b,所以=0,所以,所以=,所以a与b的夹角为,故选B.【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.6.【2019年高考全国II卷理数】已知=(2,3),=(3,t),=1,则=A.−3B.−2C.2D.3【答案】C【解析】由,,得,则,.故选C.【名师点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.7.【2019年高考北京卷理数】设点A,B,C不共线,则“与的夹角为锐角”是“”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】与的夹角为锐角,所以,即,因为,所以|+|>||;当|+|>||成立时,|+|2>|-|2•>0,又因为点A,B,C不共线,所以与的夹角...