第11章一元线性回归变量间的关系函数关系1.是一一对应的确定关系2.设有两个变量x和y,变量y随变量x一起变化,并完全依赖于x,当变量x取某个数值时,y依确定的关系取相应的值,则称y是x的函数,记为y=f(x),其中x称为自变量,y称为因变量3.各观测点落在一条线上函数关系(几个例子)相关关系(correlation)1.变量间关系不能用函数关系精确表达2.一个变量的取值不能由另一个变量唯一确定3.当变量x取某个值时,变量y的取值可能有几个4.各观测点分布在直线周围相关关系(几个例子)相关关系(类型)相关关系的描述与测度(散点图)相关分析及其假定1.相关分析要解决的问题变量之间是否存在关系?如果存在关系,它们之间是什么样的关系?变量之间的关系强度如何?样本所反映的变量之间的关系能否代表总体变量之间的关系?1.为解决这些问题,在进行相关分析时,对总体有以下两个主要假定两个变量之间是线性关系两个变量都是随机变量散点图(scatterdiagram)散点图(例题分析)【例】一家大型商业银行在多个地区设有分行,其业务主要是进行基础设施建设、国家重点项目建设、固定资产投资等项目的贷款。近年来,该银行的贷款额平稳增长,但不良贷款额也有较大比例的增长,这给银行业务的发展带来较大压力。为弄清楚不良贷款形成的原因,管理者希望利用银行业务的有关数据做些定量分析,以便找出控制不良贷款的办法下面是该银行所属的25家分行2002年的有关业务数据散点图(例题分析)散点图(不良贷款对其他变量的散点图)相关关系的描述与测度(相关系数)相关系数(correlationcoefficient)1.度量变量之间关系强度的一个统计量2.对两个变量之间线性相关强度的度量称为简单相关系数3.若相关系数是根据总体全部数据计算的,称为总体相关系数,记为r4.若是根据样本数据计算的,则称为样本相关系数,简称为相关系数,记为r也称为线性相关系数(linearcorrelationcoefficient)或称为Pearson相关系数(Pearson’scorrelationcoefficient)相关系数(计算公式)Æ样本相关系数的计算公式相关系数的性质性质1:r的取值范围是[-1,1]|r|=1,为完全相关r=1,为完全正相关r=-1,为完全负正相关r=0,不存在线性相关关系-1£r<0,为负相关0