高考总复习优化设计GAOKAOZONGFUXIYOUHUASHEJI专项突破一•函数与导数解答题专题一2022突破1突破2突破3突破1利用导数求参数的值或范围必备知识精要梳理•1.不等式恒成立(能成立)求参数范围的类型与解法设函数f(x)的定义域为D.(1)当f(x)存在最值时:①∀x∈D,f(x)≤k⇔f(x)max≤k;∃x∈D,f(x)≤k⇔f(x)min≤k.②∀x∈D,f(x)≥k⇔f(x)min≥k;∃x∈D,f(x)≥k⇔f(x)max≥k.③∀x∈D,f(x)k⇔f(x)min>k;∃x∈D,f(x)>k⇔f(x)max>k.突破1突破2突破3(2)当f(x)不存在最值时,若其值域为(m,M),①∀x∈D,f(x)≤k⇔M≤k;∃x∈D,f(x)≤k⇔mk.③∀x∈D,f(x)k⇔m≥k;∃x∈D,f(x)>k⇔M>k.(3)∀x∈D,f(x)≤g(x)⇒f(x)max≤g(x)min;∃x∈D,f(x)≤g(x)⇒f(x)min≤g(x)max.名师点析在不等式恒成立(能成立)问题中,函数有无最值、不等式中有无等号,结论是有区别的,应注意区分.突破1突破2突破32.含两个变量的“任存”问题的常见题型及具体转化策略(1)∀x1∈[a,b],x2∈[c,d],f(x1)>g(x2)⇔f(x)在区间[a,b]上的最小值>g(x)在区间[c,d]上的最大值.(2)∃x1∈[a,b],x2∈[c,d],f(x1)>g(x2)⇔f(x)在区间[a,b]上的最大值>g(x)在区间[c,d]上的最小值.(3)∀x1∈[a,b],∃x2∈[c,d],f(x1)>g(x2)⇔f(x)在区间[a,b]上的最小值>g(x)在区间[c,d]上的最小值.(4)∃x1∈[a,b],∀x2∈[c,d],f(x1)>g(x2)⇔f(x)在区间[a,b]上的最大值>g(x)在区间[c,d]上的最大值.“任存”是指任意、存在,表示两个变量对应的逻辑量词突破1突破2突破3(5)∃x1∈[a,b],当x2∈[c,d]时,f(x1)=g(x2)⇔f(x)在区间[a,b]上的值域与g(x)在区间[c,d]上的值域的交集非空.(6)∀x1∈[a,b],∃x2∈[c,d],f(x1)=g(x2)⇔f(x)在区间[a,b]上的值域⊆g(x)在区间[c,d]上的值域.(7)∀x2∈[c,d],∃x1∈[a,b],f(x1)=g(x2)⇔f(x)在区间[a,b]上的值域⊇g(x)在区间[c,d]上的值域.名师点析不等式的“任存”问题,均转化为两个函数的最值之间的不等关系;等式的“任存”问题,则转化为两个函数的值域之间的包含关系.突破1突破2突破3关键能力学案突破•考向一已知不等式恒成立求参数的取值范围命题角度1“分离参数求最值”解决不等式恒成立求参数的取值范围问题[例1-1](2021·天津南开中学期中)已知函数f(x)=-lnx+2x-2.(1)求与曲线y=f(x)相切且斜率为1的直线方程;(2)若g(x)=f(x)+ax+2,当x∈[1,e]时,g(x)≥...