2018年普通高等学校招生全国统一考试文科数学试题参考答案一、选择题1.A2.C3.A4.C5.B6.D7.A8.B9.B10.C11.B12.D二、填空题13.14.15.16.三、解答题17.解:(1)由条件可得.将代入得,,而,所以,.将代入得,,所以,.从而,,.(2)是首项为,公比为的等比数列.由条件可得,即,又,所以是首项为,公比为的等比数列.(3)由(2)可得,所以.18.解:(1)由已知可得,,.又,所以平面.又平面,所以平面平面.(2)由已知可得,,.又,所以.作,垂足为,则.由已知及(1)可得平面,所以平面,.因此,三棱锥的体积为.第1页(共25页)19.解:(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为.该家庭使用了节水龙头后50天日用水量的平均数为.20.解:(1)当与x轴垂直时,的方程为,可得的坐标为或.所以直线的方程为或.(2)当与x轴垂直时,AB为MN的垂直平分线,所以.当与x轴不垂直时,设的方程为,,,则.由得,可知.直线BM,BN的斜率之和为.①将,及的表达式代入①式分子,可得第2页(共25页).所以,可知BM,BN的倾斜角互补,所以.综上,.21.解:(1)的定义域为,.由题设知,,所以.从而,.当时,;当时,.所以在单调递减,在单调递增.(2)当时,.设,则.当时,;当时,.所以是的最小值点.故当时,.因此,当时,.22.解:(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.第3页(共25页)23.解:(1)当时,,即故不等式的解集为.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.2018年全国统一高考数学试卷(文科)(全国新课标Ⅰ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选...