12015考研数学高等数学重难点题型讲义【题型一】求函数极限【例1】求极限xxxxxxln1lim1【例2】求极限202sinlimxdttxtxxx【例3】求极限xxxxxtanarctansinarcsinlim0考研点www.kaoshidian.com400-6885-3652【例4】求极限2220sin)(cos121lim2xexxxxx【例5】求极限xxexxsincos11lim30【例6】求极限2320)(arcsinsin1coslimxxxx考研点www.kaoshidian.com400-6885-3653【例7】求极限xxxxecos1120)sin1(lim【例8】求极限210)2(coslimxxx【例9】设)(xf在原点的某邻域内二阶可导,且310))(1(limexxfxxx,求.xxxxffff10))(1(lim),0(),0(),0(考研点www.kaoshidian.com400-6885-3654【例10】xexxxxf122132)(的渐近线有条【题型二】函数间断点的判定【例1】求32,0,sin()1ln(1)sin,01xxxxfxxxx的间断点,并指出类型考研点www.kaoshidian.com400-6885-3655【题型三】极限的反问题【例1】已知axxxdxexaxax224lim,求a.【例2】已知5sincoslim0dtttaebxxx,求a,b.【例3】已知2000)1(limnnnn,求,.考研点www.kaoshidian.com400-6885-3656【例4】已知xdtttxf50sin)(,xtdttxgsin01)1()(,则当0x时,)(xf是)(xg的(A)高阶无穷小(B)低阶无穷小(C)同阶但不等价(D)等价无穷小【例5】求CBA,,使)(1)1(32xoAxCxBxex.【题型四】与积分有关的极限【例1】求极限nnnn321lim考研点www.kaoshidian.com400-6885-3657【例2】求极限nnnnnnnnnnnn2211lim【例3】求极限dxxxnn102lim.【题型五】方程根的问题【例1】确定方程212xx的实根的个数.考研点www.kaoshidian.com400-6885-3658【例2】证明方程0334arctan4xx恰有两个实根.【例3】讨论方程2axex有几个实根.【题型】微分中值定理的证明【例1】已知)(xf在),(上连续,0)()(bfaf,且)(0)()(babfaf,证明:存在),(ba使得0)(f.考研点www.kaoshidian.com400-6885-3659【例2】已知)(xf在],0[上连续,00)(dxxf,00cos)(xdxxf,证明:在),0(内至少存在两个不同的点21,使得0)()(21ff.【例3】已知)(xf在]1,0[上可导,210)(2)1(dxxxff证明:存在)1,0(,使得0)()(...