26.2实际问题与反比例函数2.能从实际问题中寻找变量之间的关系,建立数学模型,解决实际问题.1.灵活运用反比例函数的意义和性质解决实际问题.前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决实际问题中所起的作用,下面,我们进一步探讨如何利用反比例函数解决实际问题.例1市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【解析】(1)根据圆柱体的体积公式,我们有S×d=104变形得即储存室的底面积S是其深度d的反比例函数.(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?410Sd把S=500代入,得d104500解得d=20如果把储存室的底面积定为500m2,施工时应向地下掘进20m深.(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下掘进多深?【解析】410Sd根据题意,把d=15代入,得解得S≈666.67当储存室的深为15m时,储存室的底面积应改为666.67m2才能满足需要.(3)当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【解析】410Sd410S15例2码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?【解析】由已知得轮船上的货物有30×8=240(吨)所以v与t的函数解析式为tv240(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多少吨货物?【解析】由题意知t≤548524005240,5240240vvvvtvttv所以又得有思考:还有其他方法吗?图象法方程法∴平均每天至少要卸48吨货物.阻力动力阻力臂动力臂公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:若两物体与支点的距离与其重量成反比,则杠杆平衡.通俗一点可以描述为:阻力×阻力臂=动力×动力臂例3如图所示,重为8牛顿的物体G挂在杠杆的B端,O点为支点,且OB=20cm.(1)根据“杠杆定律”写出F与h之间的函数解析式;(2)当h...