24.3正多边形和圆1.了解正多边形和圆的有关概念;2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形.你还能举出更多正多边形的例子吗?正多边形:___________,_____________的多边形叫做正多边形.正n边形:如果一个正多边形有n条边,那么这个正多边形叫做正n边形.三条边相等,三个角也相等(60度).四条边都相等,四个角也相等(90度).各边相等各角也相等菱形是正多边形吗?矩形是正多边形吗?为什么?ABCDE求证:正五边形的对角线相等想一想怎样找圆的内接正三角形?怎样找圆的外切正三角形?怎样找圆的内接正方形?怎样找圆的外切正方形?怎样找圆的内接正n边形?怎样找圆的外切正n边形?EFGHABCD0ABCD【例1】把圆分成5等份,求证:⑴依次连结各分点所得的五边形是这个圆的内接正五边形;⑵经过各分点作圆的切线,以相邻切线的交点为顶点的五边形是这个圆的外切正五边形.例题⌒⌒⌒123ABCDE4⌒⌒5证明:(1) AB=BC=CD=DE=EA∴AB=BC=CD=DE=EA BCE=CDA=3AB∴∠1=∠2同理∠2=∠3=∠4=∠5又 顶点A、B、C、D、E都在⊙O上,∴五边形ABCDE是⊙O的内接五边形.⌒⌒⌒⌒⌒⌒⌒⌒证明:(2)连结OA、OB、OC,则∠OAB=∠OBA=∠OBC=∠OCB. TP、PQ、QR分别是以A、B、C为切点的⊙O的切线,∴∠OAP=∠OBP=∠OBQ=∠OCQ.∴∠PAB=∠PBA=∠QBC=∠QCB.ABCDEPQRSTO又 AB=BC∴AB=BC∴△PAB与△QBC是全等的等腰三角形.∴∠P=∠Q,PQ=2PA同理∠Q=∠R=∠S=∠TQR=RS=ST=TP=2PA⌒⌒ 五边形PQRST的各边都与⊙O相切,∴五边形PQRST是⊙O的外切正五边形.把圆分成n(n≥3)等份:依次连结各分点所得的多边形是这个圆的内接正n边形;经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.一个正多边形是否一定有外接圆和内切圆?定理正三角形有没有外接圆和内切圆?怎样作出这两个圆?这两个圆有什么位置关系?正方形有没有外接圆和内切圆?怎样作出这两个圆?这两个圆有什么位置关系?那么,正n边形呢?类比联想定理任何正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆.以中心为圆心,边心距为半径的圆与各边有何位置关系?EFCD...OO中心角半径R边心距r正多边形的中心:一个正多边形的外接圆的圆心.正多边形的半径:外接圆的半径正多边形的中心角:正多边形的每一条边所对的圆心角.正多边形的边心距:中心到正多边形的一边的距离.AB以中心为圆心,边心距为半径的圆为正多边形的内切圆EFCD.OOABG...