22.2用函数观点看一元二次方程1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.用图象法求一元二次方程的近似根.问题:1.一次函数y=2x-4与x轴的交点坐标是(,)2.说一说,你是怎样得到的?20令y=0代入函数解析式即可问题:如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2,考虑以下问题:(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?Oht1513∴当球飞行1s或3s时,它的高度为15m.解析:解方程15=20t-5t2t2-4t+3=0t1=1,t2=3你能结合上图,指出为什么在两个时间求的高度为15m吗?(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?Oht204(2)解方程20=20t5t2t24t+4=0t1=t2=2当球飞行2秒时,它的高度为20米(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?Oht你能结合图形指出为什么球不能达到20.5m的高度?20.5(3)解方程20.5=20t+5t2t24t+4.1=0因为(4)244.1<0,所以方程无解。球的飞行高度达不到20.5米(4)球从飞出到落地要用多少时间?Oht(4)解方程0=20t5t2t24t=0t1=0,t2=4当球飞行0秒和4秒时,它的高度为0米。即0秒时球从地面飞出,4秒时球落回地面。例如,解方程x2-4x+3=0就是已知二次函数y=x2-4x+3的值为0,求自变量x的值.一元二次方程ax2+bx+c=0的两个根为x1,x2,则抛物线y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0).从上面可以看出,二次函数与一元二次方程关系密切.例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,可以看作解一元二次方程-x2+4x=3.二次函数y=ax2+bx+c的图象和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式Δ=b2-4ac有两个交点有两个不相等的实数根b2-4ac>0只有一个交点有两个相等的实数根b2-4ac=0没有交点没有实数根b2-4ac<0二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?知识归纳二次函数y=ax2+bx+c的图象和x轴交点有三种情况:(1)有两个交点(2)有一个交点(3)没有交点二次函数与一元二次方程b2–4ac>0b2–4ac=0b2–4ac<0若抛物线y=ax2+bx+c与x轴有交点,则b2–4ac≥0△>0△=0△<0Oxy二次函数y=ax2+bx+c的图象和x轴交点1.不与x轴相交的抛物线是()A.y=2x2–3B.y=-2x2+3C.y=-x2–3xD.y=-2(x+1)2-32.若抛物线y=ax2+bx+c,当a>0,c<0时,图象与...