21.2.1配方法第2课时20(0)axbxca1.理解配方法;知道“配方”是一种常用的数学方法.2.会用配方法解简单的数字系数的一元二次方程.3.能说出用配方法解一元二次方程的基本步骤.4.通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力.1.如果一个数的平方等于9,则这个数是,若一个数的平方等于7,则这个数是.一个正数有几个平方根,它们具有怎样的关系?2.平方根的意义3.用字母表示完全平方公式.4.用估算法求方程x2-4x+2=0的解,你能设法求出其精确解吗?±37±两个平方根,它们互为相反数a2±2ab+b2=(ab)2如果x2=a,那么x=.aa0(1)工人师傅想在一块足够大的长方形铁皮上裁出一个面积为100cm2的正方形,请你帮他想一想这个正方形的边长应为;若它的面积为75cm2,则其边长应为.(2)如果一个正方形的边长增加3cm后,它的面积变为64cm2,则原来的正方形的边长为cm.若变化后的面积为48cm2呢?(小组讨论)(3)你会解下列一元二次方程吗?x2=5(x+5)2=5x2+12x+36=010cm35cm5cm)334(做一做:填上适当的数,使下列等式成立1、x2+12x+=(x+6)22、x2-6x+=(x-3)23、x2-4x+=(x-)24、x2+8x+=(x+)2问题:上面等式的左边常数项和一次项系数有什么关系?对于形如x2+ax的式子如何配成完全平方式?6232222424222)2()2(axaaxx将方程转化为(x+m)2=n(n≥0)的形式是本节的难点,这种方法叫配方法.【例1】解方程:x2+8x-9=0【解析】把常数项移到方程的右边,得x2+8x=9两边都加上42,得x2+8x+42=9+42.即(x+4)2=25开平方,得x+4=±5,即x+4=5或x+4=-5.所以x1=1,x2=-9.例题解方程:x2+12x-15=0【解析】移项得x2+12x=15两边同时加上62,得x2+12x+62=15+62即(x+6)2=51两边开平方,得所以516x651,65121xx跟踪训练将方程化为(x+m)2=n的形式,它的一边是一个完全平方式,另一边是一个常数,当n≥0时,两边开平方即可求出它的解,这种方法叫配方法.1、解一元二次方程的基本思路:方法总结2、利用配方法解一元二次方程的步骤:(1)移项:把常数项移到方程的右边;(2)配方:方程两边都加上一次项系数绝对值一半的平方;(3)变形:方程左边分解因式,右边合并同类项;(4)开方:根据平方根的概念,将一元二次方程转化为两个一元一次方程;(5)求解:解一元一次方程;(6)定解:写出原方程的解.1.(常德·中考)方程x2-5x-6=0的两根为()A.6和-1B.-6和1C.-2和-3D.2和3【解析】选A.移项,...