14.4因式分解14.4.1提公因式法1.了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系.2.理解提公因式法并能熟练地运用提公因式法分解因式.3.通过学生自行探求解题途径,培养学生观察、分析和创新能力,深化学生逆向思维能力.整式的乘法计算下列各式:x(x+1)=(x+1)(x-1)=x2+xx2-1请把下列多项式写成整式的乘积的形式:(1)x2+x=__________;(2)x2–1=__________.x(x+1)(x+1)(x-1)上面我们把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.整式的乘法与因式分解有什么关系?x2-1因式分解整式乘法(x+1)(x-1)因式分解与整式乘法是相反方向的变形.由m(a+b+c)=ma+mb+mc可得:ma+mb+mc=m(a+b+c)这样就把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做___________.它的各项都有一个公共的因式m,我们把因式m叫做这个多项式的_________.ma+mb+mc公因式提公因式法【例1】把8a3b2+12ab3c分解因式.分析:找公因式1.系数的最大公约数42.找相同字母ab3.相同字母的最低指数a1b2公因式为:4ab2【解析】8a3b2+12ab3c=4ab22a•2+4ab23bc•=4ab2(2a2+3bc)【解析】a(x-3)+2b(x-3)=(x-3)(a+2b)【例2】把a(x-3)+2b(x-3)分解因式.分析:这个多项式整体而言可分为两大项,即a(x-3)与2b(x-3),每项中都含有(x-3),因此可以把(x-3)作为公因式提出来.把下列各式分解因式:1.a(x-y)+b(y-x);分析:虽然a(x-y)与b(y-x)看上去没有公因式,但仔细观察可以看出(x-y)与(y-x)互为相反数,“”如果把其中一个提取一个-号,则可以出现公因式,如:y-x=-(x-y)【解析】a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)【解析】6(m-n)3-12(n-m)2=6(m-n)3-12[-(m-n)]2=6(m-n)3-12(m-n)2=6(m-n)2(m-n-2).2.6(m-n)3-12(n-m)21.填空“请在下列各式等号右边的括号前填入+”“”或-号,使等式成立:(1)2-a=______(a-2);(2)y-x=_____(x-y);(3)b+a=______(a+b);(4)(b-a)2=_____(a-b)2;(5)-m-n=_____(m+n);(6)-s2+t2=_____(s2-t2).--++--2.(苏州·中考)分解因式a2-a=.【解析】a2-a=a(a-1).答案:a(a-1)22a4a______.22a4a2a(a2)3.(盐城·中考)因式分解【解析】用提公因式法因式分解:...