第3课时题型研究——“函数与导数”大题常考的3类题型123Contents一、学前明考情——考什么、怎么考二、课堂研题型——怎么办、提知能课时跟踪检测返回返回一、学前明考情——考什么、怎么考返回返回[真题尝试]1.(2017·全国卷Ⅲ)已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;解:(1)f(x)的定义域为(0,+∞),f′(x)=1x+2ax+2a+1=x+12ax+1x.若a≥0,则当x∈(0,+∞)时,f′(x)>0,故f(x)在(0,+∞)上单调递增.若a<0,则当x∈0,-12a时,f′(x)>0;当x∈-12a,+∞时,f′(x)<0.故f(x)在0,-12a上单调递增,在-12a,+∞上单调递减.返回返回(2)当a<0时,证明f(x)≤-34a-2.证明:由(1)知,当a<0时,f(x)在x=-12a处取得最大值,最大值为f-12a=ln-12a-1-14a.所以f(x)≤-34a-2等价于ln-12a-1-14a≤-34a-2,即ln-12a+12a+1≤0.设g(x)=lnx-x+1,则g′(x)=1x-1.返回返回当x∈(0,1)时,g′(x)>0;当x∈(1,+∞)时,g′(x)<0.所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.故当x=1时,g(x)取得最大值,最大值为g(1)=0.所以当x>0时,g(x)≤0.从而当a<0时,ln-12a+12a+1≤0,即f(x)≤-34a-2.返回返回2.(2018·全国卷Ⅱ)已知函数f(x)=ex-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;解:(1)证明:当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0.设函数g(x)=(x2+1)e-x-1,则g′(x)=-(x2-2x+1)e-x=-(x-1)2e-x.当x≠1时,g′(x)<0,所以g(x)在(0,+∞)上单调递减.而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1.返回返回(2)若f(x)在(0,+∞)只有一个零点,求a.解:设函数h(x)=1-ax2e-x.f(x)在(0,+∞)上只有一个零点等价于h(x)在(0,+∞)上只有一个零点.(ⅰ)当a≤0时,h(x)>0,h(x)没有零点;(ⅱ)当a>0时,h′(x)=ax(x-2)e-x.当x∈(0,2)时,h′(x)<0;当x∈(2,+∞)时,h′(x)>0.所以h(x)在(0,2)上单调递减,在(2,+∞)上单调递增.故h(2)=1-4ae2是h(x)在(0,+∞)上的最小值.返回返回①当h(2)>0,即ae24时,因为h(0)=1,所以h(x)在(0,2)上有一个零点.由(1)知,当x>0时,ex>x2,所以h(4a)=1-16a3e4a=1-16a3e2a...