第1章——集合集合与函数与函数1.1集合1.1.2集合的包含关系[学习目标]1.明确子集,真子集,两集合相等的概念.2.会用符号表示两个集合之间的关系.3.能根据两集合之间的关系求解参数的范围.4.知道全集,补集的概念,会求集合的补集.1预习导学挑战自我,点点落实2课堂讲义重点难点,个个击破3当堂检测当堂训练,体验成功[知识链接]1.已知任意两个实数a,b,如果满足a≥b,b≥a,则它们的大小关系是.2.若实数x满足x>1,如何在数轴上表示呢?x≥1时呢?答案a=b3.方程ax2-(a+1)x+1=0的根一定有两个吗?答案不一定.[预习导引]1.集合之间的关系关系概念符号表示图形表示子集如果集合B的每个元素都是集合A的元素,就说B包含于A,或者说A包含B.若B包含于A,称B是A的一个___________或子集B⊆A真子集如果B是A的子集,但A不是B的子集,就说B是A的____________集合相等如果B是A的子集,A也是B的子集,就说两个集合___________真子集BA相等A=B全集、补集如果在某个特定的场合,要讨论的对象都是集合I的元素和子集,就可以约定把集合I叫作全集.若A是全集I的子集,I中不属于A的元素组成的子集叫作A的__________∁IA补集2.常用结论(1)任意一个集合A都是它本身的,即.(2)空集是的子集,即对任意集合A,都有.子集A⊆A任意一个集合∅⊆A要点一有限集合的子集确定问题例1写出集合A={1,2,3}的所有子集和真子集.解由0个元素构成的子集:∅;由1个元素构成的子集:{1},{2},{3};由2个元素构成的子集:{1,2},{1,3},{2,3};由3个元素构成的子集:{1,2,3}.由此得集合A的所有子集为∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合A本身,即{1,2,3},剩下的都是A的真子集.规律方法1.求解有限集合的子集问题,关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出;(3)注意两个特殊的集合,即空集和集合本身.2.一般地,若集合A中有n个元素,则其子集有2n个,真子集有2n-1个,非空真子集有2n-2个.跟踪演练1已知集合M满足{2,3}⊆M⊆{1,2,3,4,5},求集合M及其个数.解当M中含有两个元素时,M为{2,3};当M中含有三个元素时,M为{2,3,1},{2,3,4},{2,3,5};当M中含有四个元素时,M为{2,3,1,4},{2,3,1,5},{2,3,4,5};当M中含有五个元素时,M为{2,3,1,4,5};所以满足条件的集合M为{2,3},{2,3,1},{2,3,4},{2,3,5},{2,3,1,4},{2,3,1,5},{2,3,4,5},{2,3,1,4,5},集合M的个要点二集合间关系的判定例2指出下列各对集...