数学选择性必修第二册RJA第四章数列专题1数列通项公式的求法例1在数列{an}中,a1=2,且an=3+an-12(n≥2),则an=________.【解析】将an=3+an-12平方可得an2-an-12=3,所以{an2}是首项为a12=4,公差d为3的等差数列,故an2=a12+(n-1)d=4+3(n-1)=3n+1.因为an>0,所以an=3n+1.3n+1例2已知数列{an}满足a1=12,an+1=an+1n2+n,n∈N*,则an=________.【解析】由已知条件可得,an+1-an=1n2+n=1n(n+1)=1n-1n+1,则(a2-a1)+(a3-a2)+…+(an-an-1)=1-12+12-13+13-14+…+1n-1-1n,即an-a1=1-1n,故an=12+1-1n=32-1n.32-1n例3已知数列{an}中,an+1=2an+1,且a1=1,则an=________.【解析】方法一: an+1=2an+1,∴an+1+1=2(an+1),令bn=an+1,则{bn}是以首项b1=a1+1=2,公比q=2的等比数列.∴bn=b1qn-1=2·2n-1=2n,∴an=2n-1.方法二:an=2an-1+1=2(2an-2+1)+1=22an-2+2×1+1=23an-3+22×1+2×1+1=2n-1a1+(2n-2+2n-3+…+2+1)×1=2n-1+2n-2+2n-3+…+2+1=2n-1.2n-1例4已知数列{an}满足an+1=2an+3×5n+5,a1=2,则数列{an}的通项公式an=________.【解析】 an+1=2an+3×5n+5,∴an+1+5=2(an+5)+3×5n,∴an+1+5-5n+1=2(an+5-5n). a1+5-51=2≠0,∴{an+5-5n}是以2为首项,2为公比的等比数列.∴an+5-5n=2×2n-1=2n,故an=5n+2n-5.5n+2n-5例5在正项数列{an}中,a1=1,a2=10,anan-1=an-1an-2(n=3,4,5,…),求{an}的通项公式.【解】对anan-1=an-1an-2两边同时取常用对数可得,lgan-lgan-1=12(lgan-1-lgan-2).令bn=lgan+1-lgan,则b1=lga2-lga1=1,bn-1=12bn-2(n=3,4,5,…),所以bn=12n-1(n=1,2,3,…),所以lgan+1-lgan=12n-1,故an+1an=.由累乘法可得,ana1=10×=,∴an=.例6已知数列{an}中,a1=35,an+1=an2an+1,求数列{an}的通项公式.【解】对已知关系式两边取倒数可得1an+1=2an+1an=1an+2.又1a1=53,∴1an是首项为53,公差为2的等差数列,∴1an=53+2(n-1)=6n-13,an=36n-1.例7已知数列{an}满足an+1=5an-6an-1(n≥2),且a1=1,a2=4,则{an}的通项公式an=________.【解析】令an+1-xan=y(an-xan-1),即an+1=(x+y)an-xyan-1,x+y=5,-xy=-6,解得x=2,y=3或x=3,y=2.当x=2,y=3时,a...