课后限时集训(三十九)数列求和课后限时集训(三十九)数列求和1A组基础巩固练B组综合运用练2C组思维拓展练301A组基础巩固练课后限时集训(三十九)数列求和1A组基础巩固练B组综合运用练2C组思维拓展练31352468791011一、选择题1.在等差数列{an}中,若a3+a5+a7=6,a11=8,则数列1an+3an+4的前n项和Sn=()A.n+1n+2B.nn+1C.nn+2D.2nn+1课后限时集训(三十九)数列求和1A组基础巩固练B组综合运用练2C组思维拓展练31352468791011B[设等差数列{an}的公差为d,由a3+a5+a7=6,a11=8,得a5=2,d=1,所以an=n-3.则an+3=n,an+4=n+1,所以1an+3an+4=1nn+1=1n-1n+1.所以Sn=1-1n+1=nn+1.故选B.]课后限时集训(三十九)数列求和1A组基础巩固练B组综合运用练2C组思维拓展练321345687910112.数列{(-1)n(2n-1)}的前2020项和S2020等于()A.-2018B.2018C.-2020D.2020D[S2020=-1+3-5+7+…-(2×2019-1)+(2×2020-1)=2×1010=2020.故选D.]课后限时集训(三十九)数列求和1A组基础巩固练B组综合运用练2C组思维拓展练331245687910113.已知数列{an}的通项公式是an=2n-12n,其前n项和Sn=32164,则项数n=()A.13B.10C.9D.6课后限时集训(三十九)数列求和1A组基础巩固练B组综合运用练2C组思维拓展练33124568791011D[由an=2n-12n=1-12n,得Sn=1-12+1-14+1-18+…+1-12n=n-12+14+18+…+12n=n-121-12n1-12=n-1+12n.令n-1+12n=32164,即n+12n=38564.解得n=6,故选D.]课后限时集训(三十九)数列求和1A组基础巩固练B组综合运用练2C组思维拓展练341235687910114.(多选)(2020·重庆月考)已知数列{an}满足a1=-2,anan-1=2nn-1(n≥2,n∈N*),{an}的前n项和为Sn,则()A.a2=-8B.an=-2n·nC.S3=-30D.Sn=(1-n)·2n+1-2课后限时集训(三十九)数列求和1A组基础巩固练B组综合运用练2C组思维拓展练34123568791011ABD[由题意可得,a2a1=2×21,a3a2=2×32,a4a3=2×43,…,anan-1=2×nn-1(n≥2,n∈N*),以上式子左、右两边分别相乘得ana1=2n-1·n(n≥2,n∈N*),把a1=-2代入,得an=-2n·n(n≥2,n∈N*),又a1=-2符合上式,故数列{an}的通项公式为an=-2n·n(n∈N*),a2=-8,故A,B正确;Sn=-(1×2+2×22+…+n·...