高中同步学案优化设计GAOZHONGTONGBUXUEANYOUHAUSHEJI第1课时函数的单调性第5章2021内容索引0102课前篇自主预习课堂篇探究学习课标阐释思维脉络1.理解函数的单调性及其几何意义,能运用函数图象理解和研究函数的单调性.(直观想象)2.会用函数单调性的定义判断(或证明)一些函数的单调性.(逻辑推理)3.会求一些具体函数的单调区间.(数学运算)课前篇自主预习情境导入德国有一位著名的心理学家艾宾浩斯,对人类的记忆牢固程度进行了有关研究.他经过测试,得到了以下一些数据:时间间隔t刚记忆完毕20分钟后60分钟后8~9小时后1天后2天后6天后一个月后记忆量y(百分比)10058.244.235.833.727.825.421.1以上数据表明,记忆量y是时间间隔t的函数,艾宾浩斯根据这些数据描绘出了著名的“艾宾浩斯遗忘曲线”,如图.当时间间隔t逐渐增大时,你能看出对应的函数值y有什么变化趋势吗?通过这个试验,你打算以后如何对待刚学过的知识?知识点拨一、增函数与减函数条件设函数y=f(x)的定义域为A,区间I⊆A.如果对于区间I内的任意两个值x1,x2,当x1f(x2)结论那么称y=f(x)在区间I上是增函数,I称为y=f(x)的增区间那么称y=f(x)在区间I上是减函数,I称为y=f(x)的减区间图示名师点析增(减)函数定义中的x1,x2的特征(1)任意性,即“任意两个值x1,x2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x1