高中同步学案优化设计GAOZHONGTONGBUXUEANYOUHAUSHEJI2.5.2圆与圆的位置关系第二章2021内容索引0102课前篇自主预习课堂篇探究学习课标阐释思维脉络1.掌握圆与圆的位置关系及判定方法.(数学抽象)2.能根据圆的方程判断圆与圆的位置关系.(数学运算)3.能综合应用圆与圆的位置关系解决问题.(逻辑推理)课前篇自主预习[激趣诱思]“打水漂”游戏别名轻功水上漂、七点漂、漂瓦.人们用扁形瓦片或石片,在手上呈水平放置后,用力飞出,石片擦水面飞行,石片碰水面后弹起再飞,石片不断在水面上向前弹跳,直至沉水.在这一过程中,石片与水面接触形成了一个个逐渐扩大的圆,这些圆在变化的过程中位置关系是怎样的?[知识点拨]圆与圆的位置关系的判定方法1.几何法:圆O1:(x-x1)2+(y-y1)2=r12(r1>0),圆O2:(x-x2)2+(y-y2)2=r22(r2>0),两圆的圆心距d=|O1O2|=ට(x1-x2)2+(y1-y2)2,则有2.代数法:圆O1:x2+y2+D1x+E1y+F1=0(D12+E12-4F1>0),圆O2:x2+y2+D2x+E2y+F2=0(D22+E22-4F2>0),两圆的方程联立得方程组,则有方程组解的情况2组1组0组两圆的公共点2个1个0个两圆的位置关系相交外切或内切外离或内含微思考1当两圆外离、外切、相交、内切、内含时,公切线的条数分别是多少?提示公切线的条数分别是4,3,2,1,0.微思考2当两圆相交、外切、内切时,连心线有什么性质?提示当两圆相交时,连心线垂直平分公共弦;当两圆外切时,连心线垂直于过两圆公共点的公切线;当两圆内切时,连心线垂直于两圆的公切线.微练习1判断下列两圆的位置关系:①(x+2)2+(y-2)2=1与(x-2)2+(y-5)2=16.②x2+y2+6x-7=0与x2+y2+6y-27=0.解①根据题意得,两圆的半径分别为r1=1和r2=4,两圆的圆心距d=ට[2-(-2)]2+(5-2)2=5.因为d=r1+r2,所以两圆外切.②将两圆的方程化为标准方程,得(x+3)2+y2=16,x2+(y+3)2=36,故两圆的半径分别为r1=4和r2=6.两圆的圆心距d=ට[0-(-3)]2+(-3-0)2=3ξ2,因为|r1-r2|0),圆C2:x2+y2-4ax-2y+4a2=0(a>0).试求a为何值时,两圆C1,C2的位置关系满足下列条件:(1)相切;(2)相交;(3)外离;(4)内含.思路分析求出圆心距,与两半径的和或差比较求出a的值.解圆C1,C2的方程,经配方后可得C1:(x-a)2+(y-1)2=16,C2:(x-2a)2+(y-1)2=1,∴圆心C1(a,1),C2(2a,1),半径r1=4,r2=1.(1)当|C1C2|=r1+r2=5,即a=5时,两圆外切;当|C1C2|=r1-r2=3,即a=3时,两圆内切....