数学选择性必修第二册RJA第四章数列专题2数列求和例1[天津文2018·18]设{an}是等差数列,其前n项和为Sn(n∈N*);{bn}是等比数列,公比大于0,其前n项和为Tn(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(1)求Sn和Tn;(2)若Sn+(T1+T2+…+Tn)=an+4bn,求正整数n的值.【解】(1)设等比数列{bn}的公比为q.由b1=1,b3=b2+2,可得q2-q-2=0. q>0,∴q=2,故bn=2n-1.∴Tn=1-2n1-2=2n-1.设等差数列{an}的公差为d.由b4=a3+a5,可得a1+3d=4.由b5=a4+2a6,可得3a1+13d=16,从而a1=1,d=1,故an=n,∴Sn=n(n+1)2.(2)由(1)知T1+T2+…+Tn=(21+22+…+2n)-n=2n+1-n-2.由Sn+(T1+T2+…+Tn)=an+4bn,可得n(n+1)2+2n+1-n-2=n+2n+1,整理得n2-3n-4=0,解得n=-1(舍去)或n=4.∴n的值为4.例2设f(x)=4x4x+2,若S=f12017+f22017+…+f20162017,则S=________.【解析】 f(x)=4x4x+2,∴f(1-x)=41-x41-x+2=22+4x.∴f(x)+f(1-x)=4x4x+2+22+4x=1.S=f12017+f22017+…+f20162017,①S=f20162017+f20152017+…+f12017,②1008由①+②,得2S=f12017+f20162017+[f22017+f20152017]+…+f20162017+f12017=2016,∴S=20162=1008.例3若An和Bn分别表示数列{an}和{bn}的前n项和,对任意正整数n,an=2(n+1),3An-Bn=4n.(1)求数列{bn}的通项公式;(2)记cn=2An+Bn,求{cn}的前n项和Sn.【解】(1) an=2(n+1),∴{an}为等差数列,且a1=4.∴An=n(a1+an)2=n(4+2n+2)2=n2+3n,∴Bn=3An-4n=3(n2+3n)-4n=3n2+5n.当n=1时,b1=B1=8;当n≥2时,bn=Bn-Bn-1=3n2+5n-[3(n-1)2+5(n-1)]=6n+2. b1=8满足上式,∴bn=6n+2.∴数列{bn}的通项公式为bn=6n+2.(2)由(1)知cn=2An+Bn=24n2+8n=141n-1n+2,∴Sn=14[11-13+12-14+13-15+(14-16)+…+1n-1-1n+1+1n-1n+2]=141+12-1n+1-1n+2=38-141n+1+1n+2.例4若公比为q的等比数列{an}的首项a1=1,且满足an=an-1+an-22(n=3,4,5,…).(1)求q的值;(2)设bn=n·an,求数列{bn}的前n项和Sn.【解】(1)由题意可知2an=an-1+an-2(n=3,4,5,…),即2a1qn-1=a1qn-2+a1qn-3. a1=1,∴2q2-q-1=0,解得q=1或q=-12.(2)①当q=1时,an=1,bn=n,Sn=n(n+1)2.②当q=-12时,an=-12n-1,bn=n·-12n-1,Sn=1·-120+2·-121+3·...