二项式定理(1)高二年级数学主讲人:李新国北京市铁路第二中学思考:()abaabb2222()ab3()()abab2()()aabbab222aababb322333()ab4()()abab3()()aababbab322333aabababb432234464……()?nab()()abcdacadbcbd问题1:的展开式是什么样的?()()abcdabcd224acadbcbd()()()ababab2问题2:的展开式是什么样的?2()abaabbab22aabb222a21项ab2项b21项224()()()()abababab3问题3:的展开式是什么样的?3()aba31项ab23项ab23项b31项()abaababb3322333a3ab2ab2ab2ab2ab2ab2b3C03C13C23C33322228()()()()()ababababab4问题4:的展开式是什么样的?4()aba41项ab34项ab226项ab34项()abaabababb4432234464b41项a4ab3ab22ab3b4C04C14C24C34C444216()()()()nabababab问题5:的展开式是什么样的?()nabna项nab1项nrrab项nb项nC1rnCnC0nnCnab22项nC2()nN()nnnnnrnnnrnnnrnabaababaCCCbCbC012122n2二项式定理:()nnnnnrnnnrnnnrnabaababaCCCbCbC012122()nN等式右边的多项式叫做的二项展开式,()nab其中各项系数叫做展开式的二项式系数.(,,,)rnCrn01二项式定理:()nN展开式中的项叫做二项展开式的通项,rnrrnCab通项是展开式的第项r1()rnrrrnrnrnTCab10NN,,≤≤我们把上面的公式叫做二项展开式的通项公式.()nnnnnrnnnrnnnrnabaababaCCCbCbC012122二项式定理:()nN1.二项展开式的每一项的次数都等于二项式的幂指数n;2.二项展开式的项数是项;n13.二项展开式书写的顺序按照字母a的降幂排序,字母b的升幂排序.()nnnnnrnnnrnnnrnabaababaCCCbCbC012122二项式定理:()nN如果设,则,abx1().nrrnnnnnnxCxCxCxCx12211().nnnnnrrrnnnnnnnabaababCCCCbbCa101222()()()().rnnnnnnnnnnrrnCCaaCbababbCC122012()nab[()]nab例1展开.61(2)xx解法1:61(2)xx61[2()]xx11622[2()]xxab16062(2)xC42461122(2)()Cxx32123641922401606012xxxxxx1216152(2)()Cxx22261142(2)()Cx...