第3课时函数极值与最值的综合应用题型一利用导数证明不等式——师生共研例1设a为实数,函数f(x)=ex-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.解析:(1)由f(x)=ex-2x+2a,x∈R,得f′(x)=ex-2,x∈R,令f′(x)=0,得x=ln2.于是当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,ln2)ln2(ln2,+∞)f′(x)-0+f(x)]2(1-ln2+a)Z故f(x)单调递减区间是(-∞,ln2),单调递增区间是(ln2,+∞).f(x)在x=ln2处取得极小值,极小值f(ln2)=eln2-2ln2+2a=2(1-ln2+a),无极大值.(2)证明:设g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R.由(1)知当a>ln2-1时,g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0).又g(0)=0,从而对任意x∈(0,+∞),g(x)>0.即ex-x2+2ax-1>0,故ex>x2-2ax+1.构造函数g(x)=ex-x2+2ax-1.方法归纳待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.跟踪训练1已知函数f(x)=ex-ax(e为自然对数的底数,a为常数)的图象在(0,1)处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2ln2时,f′(x)>0,f(x)在(ln2,+∞)上单调递增.所以当x=ln2时,f(x)取得极小值,且极小值为f(ln2)=eln2-2ln2=2-2ln2,f(x)无极大值.(2)证明:令g(x)=ex-x2,则g′(x)=ex-2x.由(1)得g′(x)=f(x)≥f(ln2)>0,故g(x)在R上单调递增.所以当x>0时,g(x)>g(0)=1>0,即x20,gπ2=2π-1<0,所以g(x)在π3,π2上有唯一的零点α,所以命题得证.(2)①由(1...