3.1.5空间向量运算的坐标表示123123(,,),(,,)aaaabbbb设则;ab;ab;a;ab//;ab;ab112233(,,)ababab112233(,,)ababab123(,,),()aaaR112233ababab112233,,()ababababR11223300abababab一、向量的直角坐标运算新课2222123||aaaaaa2222123||bbbbbb1.距离公式(1)向量的长度(模)公式注意:此公式的几何意义是表示长方体的对角线的长度。二、距离与夹角||��ABABABAB212121(,,)xxyyzz222212121()()()xxyyzz222212121||()()()�ABdABxxyyzz在空间直角坐标系中,已知、,则111(,,)Axyz222(,,)Bxyz(2)空间两点间的距离公式cos,||||ababab112233222222123123;abababaaabbb2.两个向量夹角公式注意:(1)当时,同向;(2)当时,反向;(3)当时,。cos,1ab与abcos,1ab与abcos,0abab思考:当及时,夹角在什么范围内?1cos,0ab,10cosab例1.已知(2,3,5),(3,1,4),,||,8,abababaaab求(2,3,5)(3,1,4)(5,4,9)ab(2,3,5)(3,1,4)(1,2,1)ab222||2(3)538a88(2,3,5)(16,24,40)a(2,3,5)(3,1,4)2(3)(3)15(4)29ab解:三、应用举例三、应用举例例2已知、,求:(1)线段的中点坐标和长度;(3,3,1)A(1,0,5)BAB解:设是的中点,则(,,)MxyzAB113()(3,3,1)1,0,52,,3,222�OMOAOB∴点的坐标是.M32,,32222,(13)(03)(51)29.ABdOABM(2)到两点距离相等的点的坐标满足的条件。、AB(,,)Pxyz,,xyz解:点到的距离相等,则(,,)Pxyz、AB222222(3)(3)(1)(1)(0)(5),xyzxyz化简整理,得46870xyz即到两点距离相等的点的坐标满足的条件是、AB(,,)xyz46870xyz证明:不妨设已知正方体的棱长为1个单位长度,设1,,DAiDCjDDk�分别以为坐标向量建立空间直角坐标系则,,ijk...