3.1.3空间向量的数量积运算空间两个向量的数量积的性质(1)空间向量的数量积具有和平面向量的数量积完全相同的性质.(2)性质(2)是用来判断两个向量是否垂直,性质(5)是用来求两个向量的夹角.(3)性质(3)是实数与向量之间转化的依据.例1、例2、已知空间向量a,b满足|a|=4,|b|=8,a与b的夹角是150°,计算:(1)(a+2b)·(2a-b);(2)|4a一2b|.如图,已知空间四边形ABCD的每条边和对角线长都等于a,点E、F、G分别是AB、AD、DC的中点。求下列向量的数量积:(1);(2);(3);(4).ABACADBDGFACEFBC��例3ABCDEFG在平行四边形ABCD中,AB=AC=1,∠ACD=90°,将它沿对角线AC折起,使AB与CD成60°角,求B,D间的距离.例4已知空间四边形OABC中,M,N,P,Q分别为BC,AC,OA,OB的中点,若AB=OC,求证:PM⊥QN.证明:例5例6、如图,在空间四边形ABCD中,2AB,3BC,23BD,3CD,30ABD,60ABC,求AB与CD的夹角的余弦值奎屯王新敞新疆解:∵CDBDBC�,∴ABCDABBDABBC�||||cos,ABBDABBD�||||cos,ABBCABBC�223cos15023cos120633∴31cos,232||||ABCDABCDABCD���,∴AB与CD的夹角的余弦值为12.