ZPZ空间“角度”问题ABCD1A1B1C1DMxyzBCD1A1B1C1DMN|||||||sin|nADnAD解:如图建立坐标系A-xyz,则(0,0,0),A)6,2,6(M可得由,51NA)3,4,0(N).3,4,0(),6,2,6(NAMA由的法向量设平面),,,(zyxn00nNAnMA0340626zyzyx即在长方体中,ADANM求与平面所成的角的正弦值.例1:1111ABCDABCD1112,MBCBM为上的一点,且1NAD点在线段上,15,AN,61AA,8,6ADABABCD1A1B1C1DMNxyzBCD1A1B1C1DMN)34,1,1(n得,34343)34(118|0810|222(0,8,0),AD�又ADANM与平面所成角的正弦值是34343|||||||sin|nDAnDA在长方体中,ADANM求与平面所成的角的正弦值.例1:1111ABCDABCD1112,MBCBM为上的一点,且1NAD点在线段上,15,AN,61AA,8,6ADAB例2、如图,在四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC底面ABCD。已知AB=2,BC=,SA=SB=.(1)求证(2)求直线SD与平面SAB所成角的正弦值。045ABC223.SABCSABCDOxyz【典例剖析】例3如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,PA=AB=1,AD=,在线段BC上是否存在一点E,使PA与平面PDE所成角的大小为450?若存在,确定点E的位置;若不存在说明理由。【典例剖析】3DBACEPxzy(0,0,1),(3,0,1),(3,1,0)APDPDEm�(,,),,,30,3,(3)0,(3),PDEnxyznDPnDExzzxmxyymx��设平面的法向量为则解得1,(1,3,3),xnm令得2345sin45,4(3)PAPDEm与平面所成角的大小为32323245mmBEPAPDE解得或(舍),因此,当时,与平面所成角的大小为。解:以A为原点,AD、AB、AP所在的直线分别为X轴、Y轴、Z轴,建立空间直角坐标系,(0,0,0),(0,0,1),(3,0,0),(,1,0),APDEm设BE=m,则如图,已知:直角梯形OABC中,OABC,AOC=90°∥∠,SO⊥面OABC,且OS=OC=BC=1,OA=2。求:(1)异面直线SA和OB所成的角的余弦值(2)OS与面SAB所成角的余弦值(3)二面角B-AS-O的余弦值OABCSxyz例4【巩固练习】1三棱锥P-ABCPAABC,PA=AB=AC,⊥,E为PC中点,则PA与BE所成角的余弦值为_________.2直三棱柱ABC-A1B1C1中,A1A=2,AB=AC=1,则AC1与截面BB1CC1所成角的余弦值为_________.3正方体中ABCD-A1B1C1D1中E为A1D1的中点,则二面角E-BC-A的大小是________090BAC090BAC6631010045