第2课时圆锥曲线中的证明、定值及定点问题关键能力—考点突破关键能力—考点突破反思感悟圆锥曲线中的证明问题涉及证明的范围比较广,但无论证明什么,其常用方法有直接法和转化法,对于转化法,先是对已知条件进行化简,根据化简后的情况,将证明的问题转化为另一问题.(2)已知点A(2,0),过P(2,-4)的直线l交椭圆C于M,N两点,证明:直线AM的斜率与直线AN的斜率之和为定值.反思感悟圆锥曲线中定值问题的两大解法(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)引进变量法:其解题流程为(2)设圆C2与y轴的正半轴交于点P.已知直线l斜率存在且不为0,与椭圆C1交于A,B两点,满足∠BPO=∠APO(O为坐标原点),证明:直线l过定点.反思感悟求解定点问题常用的方法(1)“特殊探路,一般证明”,即先通过特殊情况确定定点,再转化为有方向、有目标的一般性证明.(2)“一般推理,特殊求解”,即先由题设条件得出曲线的方程,再根据参数的任意性得到定点坐标.(3)求证直线过定点(x0,y0),常利用直线的点斜式方程y-y0=k(x-x0)来证明.