第三节函数的奇偶性与周期性必备知识—基础落实关键能力—考点突破微专题最新考纲·1.了解函数奇偶性的含义.2.会运用基本初等函数的图象分析函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.·考向预测·考情分析:以理解函数的奇偶性、会用函数的奇偶性为主,其中与函数的单调性、周期性交汇的问题仍是高考考查的热点.题型以选择、填空题为主,中等偏上难度.学科素养:通过函数奇偶性和周期性的概念考查数学抽象的核心素养;通过函数性质的应用考查直观想象、逻辑推理的核心素养.必备知识—基础落实一、必记2个知识点1.函数的奇偶性奇偶性定义图象特点偶函数如果函数f(x)的定义域内_________x都有_____________,那么函数f(x)是偶函数关于______对称奇函数如果函数f(x)的定义域内_________x都有________________,那么函数f(x)是奇函数关于______对称任意一个f(-x)=f(x)y轴任意一个f(-x)=-f(x)原点2.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=______,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中______________的正数,那么这个________就叫做f(x)的最小正周期.f(x)存在一个最小最小正数二、必明3个常用结论1.函数奇偶性常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.3.函数对称性常用结论(1)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.(2)若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.(3)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.三、必练4类基础题(一)判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)“a+b=0”是“函数f(x)在区间[a,b](a≠b)上具有奇偶性”的必要条件.()(2)若函数f(x)是奇函数,则必有f(0)=0.()(3)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.()(4)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.()(5)已知函数y=f(x)是定义在R上的偶函数,若在(-∞,0)上是减函数,则在(0,+∞)...