第3课时圆锥曲线的最值、范围及探索性问题关键能力—考点突破微专题关键能力—考点突破(2)求S△ABM的最大值.反思感悟几何方法求解圆锥曲线中的最值(范围)问题,即通过圆锥曲线的定义、几何性质将最值转化,利用平面几何中的定理、性质,结合图形的直观性求解最值问题,常用的结论有:(1)两点间线段最短;(2)点到直线的垂线段最短.(2)若A、B分别为椭圆C的右顶点与上顶点,直线y=kx(k>0)与椭圆C相交于M、N两点,求四边形AMBN的面积的最大值及此时k的值.反思感悟首先需要根据题目的条件和结论找出明确的函数关系,建立起目标函数,常用基本不等式法求解.(2)过P作与直线l垂直的直线m交抛物线E于C,D.求四边形ACBD面积的最小值.反思感悟把要求最值的几何量或代数表达式表示为某个(些)参数的函数解析式,然后利用函数的思想、不等式的思想等进行求解.【对点训练】1.已知直线l:y=kx+t与圆C1:x2+(y+1)2=2相交于A,B两点,且△C1AB的面积取得最大值,又直线l与抛物线C2:x2=2y相交于不同的两点M,N,则实数t的取值范围是________________________.2.[2022·河南高三月考]已知抛物线C:x2=2py(p>0)的焦点为F,过F的直线与抛物线C交于A,B两点,当A,B两点的纵坐标相同时,|AB|=4.(1)求抛物线C的方程;(2)若P,Q为抛物线C上两个动点,|PQ|=m(m>0),E为PQ的中点,求点E纵坐标的最小值.(2)点P(4,0)是x轴上的定点,直线l与椭圆C交于不同的两点A、B,已知A关于y轴的对称点为M,B点关于原点的对称点为N,已知P、M、N三点共线,试探究直线l是否过定点.若过定点,求出定点坐标;若不过定点,请说明理由.反思感悟求解存在性问题时,通常的方法是首先假设满足条件的几何元素或参数值存在,然后利用这些条件并结合题目的其他已知条件进行推理与计算,若不出现矛盾,并且得到了相应的几何元素或参数值,就说明满足条件的几何元素或参数值存在;若在推理与计算中出现了矛盾,则说明满足条件的几何元素或参数值不存在,同时推理与计算的过程就是说明理由的过程.(2)若直线l过点F交双曲线C1的右支于M,N两点,设直线AM,BN斜率分别为k1,k2,是否存在实数λ使得k1=λk2?若存在,求出λ的值;若不存在,请说明理由.微专题36解析几何中减少运算量的常见技巧技巧一解析几何中的“设而不求”“设而不求”是简化运算的一种重要手段,它的精彩在于设而不求,化繁为简.解题过程中,巧妙设点,避免解方程组,常见类型有:(1)灵活应用“点、线的几何性质”...