数学选修2RJA04第四章数列04专题1利用递推公式求通项公式题型1累加法解析专题1利用递推公式求通项公式刷难关1.已知数列{an}满足a1=12,an+1=an+1n2+n,则an=_____________.因为an+1=an+1n2+n,所以an+1-an=1n2+n=1n-1n+1.当n≥2,n∈N*时,an-an-1=1n-1-1n,所以a2-a1=1-12,a3-a2=12-13,…an-an-1=1n-1-1n,将这n-1个式子相加可得an-a1=1-12+12-13+…+1n-1-1n=1-1n,32-1n专题1利用递推公式求通项公式刷难关又因为a1=12,所以an=1-1n+12=32-1n(n≥2).当n=1时,a1=32-11=12也符合上式,所以an=32-1n.解析解析专题1利用递推公式求通项公式刷难关2.[吉林长春外国语学校2021高二开学考试]在数列{an}中,若a1=2,an+1=an+n+1,则an=____________. a1=2,an+1=an+n+1,∴an=an-1+(n-1)+1(n≥2,n∈N*),∴an-an-1=n(n≥2,n∈N*),∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+…+2+2=n(n+1)2+1(n≥2,n∈N*),当n=1时也符合,∴an=n(n+1)2+1.n(n+1)2+1题型2累乘法解析专题1利用递推公式求通项公式刷难关D3.在数列{an}中,a1=1,an=n(an+1-an)(n∈N*),则数列{an}的通项an=()A.2n-1B.n+1nn-1C.n2D.n由an=n(an+1-an)(n∈N*)得(n+1)an=nan+1(n∈N*),即an+1an=n+1n(n∈N*),则当n≥2时,anan-1=nn-1,an-1an-2=n-1n-2,an-2an-3=n-2n-3,…,a2a1=21,由累乘法可得ana1=n(n≥2).又因为a1=1,所以an=n(n≥2).当n=1时,a1=1符合上式,所以an=n.故选D.解析专题1利用递推公式求通项公式刷难关C4.已知数列{an}满足a1=2,an+1=2nan,则数列{an}的通项an=()A.2n2-n+12B.2n2+n+12C.2n2-n+22D.2n2-n-22 an+1=2nan,∴an+1an=2n,当n≥2时,an=anan-1·an-1an-2·…·a2a1·a1=2n-1·2n-2·…·2×2=2n2-n+22,当n=1时,a1=2也符合上述通项公式,∴an=2n2-n+22.故选C.解析专题1利用递推公式求通项公式刷难关5.在数列{an}中,a1=1,a1+a222+a332+…+ann2=an(n∈N*),则an=________.由题意得,当n≥2时,a1+a222+a332+…+an-1(n-1)2=an-1,所以ann2=an-an-1,即(n2-1)an=n2an-1,即n+1nan=nn-1an-1,所以n+1nan=nn-1an-1=n-1n-2an-2=…=21a1=2,所以an=2nn+1(n≥2),当n=1时,也符合上式,所以an=2nn+1.2nn...