第26章二次函数26.2二次函数的图象与性质第2课时二次函数y=ax2+k的图象与性质学习目标1.会画二次函数y=ax2+k的图象.(重点)2.掌握二次函数y=ax2+k的性质并会应用.(难点)3.理解y=ax²与y=ax²+k之间的联系.(重点)1.会画二次函数y=ax2+k的图象.(重点)2.掌握二次函数y=ax2+k的性质并会应用.(难点)3.理解y=ax²与y=ax²+k之间的联系.(重点)已知二次函数①y=-x2;②y=x2;③y=15x2;④y=-4x2;⑤y=-x2;⑥y=4x2.(1)其中开口向上的有(填题号);(2)其中开口向下,且开口最大的是(填题号);(3)当自变量由小到大变化时,函数值先逐渐变大,然后逐渐变小的有(填题号).已知二次函数①y=-x2;②y=x2;③y=15x2;④y=-4x2;⑤y=-x2;⑥y=4x2.(1)其中开口向上的有(填题号);(2)其中开口向下,且开口最大的是(填题号);(3)当自变量由小到大变化时,函数值先逐渐变大,然后逐渐变小的有(填题号).35910②③⑥②③⑥⑤⑤①④⑤①④⑤导入新课复习引入这个函数的图象是如何画出来的?情境引入xy21840yx讲授新课二次函数y=ax2+k的图象与性质一探究归纳解:先列表:x···-3-2-10123···············例1在同一直角坐标系中,画出二次函数与的图象.212yx2112yx212yx2112yx921122120122923321323112xy-4-3-2-1o1234123456212yx2112yx描点、连线,画出这两个函数的图象观察与思考抛物线,的开口方向、对称轴和顶点各是什么?抛物线,的开口方向、对称轴和顶点各是什么?212yx2112yx212yx2112yx二次函数二次函数开口方向开口方向顶点坐标顶点坐标对称轴对称轴向上向上(0,0)(0,1)y轴y轴想一想:通过上述例子,函数y=ax2+k的性质是什么?y2x31y23121xy23122xy-2-2422-4231xy23121xy23122xyx0二次函数y=ax2+k的图象和性质(a<0)二做一做在同一坐标系内画出下列二次函数的图象:根据图象回答下列问题:(1)图象的形状都是.(2)三条抛物线的开口方向_______;(3)对称轴都是__________(4)从上而下顶点坐标分别是_____________________(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________(6)函数的增减性都相同:_________________________________________________________抛物线向下直线x=0(0,0)(0,2)(0,-2)高大y=0y=-2y=2231xy23122xyy-2-222-423121xyx0对称轴左侧y随x增大而增大对称轴右侧y随x增大而减小二次函数y=ax2+k(a≠0...