一元二次方程根的分布一.知识要点二次方程的根从几何意义上来说就是抛物线与轴交点的横坐标,所以研究方程的实根的情况,可从的图象上进行研究.若在内研究方程的实根情况,只需考察函数与轴交点个数及交点横坐标的符号,根据判别式以及韦达定理,由的系数可判断出的符号,从而判断出实根的情况.若在区间内研究二次方程,则需由二次函数图象与区间关系来确定.1.二次方程有且只有一个实根属于的充要条件若其中一个是方程的根,则由韦达定理可求出另一根.若不是二次方程的根,二次函数的图象有以下几种可能:(1)(2)(3)(4)由图象可以看出,在处的值与在处的值符号总是相反,即;反之,若,的图象的相对位置只能是图中四种情况之一.所以得出结论:若都不是方程的根,记,则有且只有一个实根属于的充要条件是.2.二次方程两个根都属于的充要条件方程的两个实根都属于,则二次函数的图1xyOmn1x2xxyOmn1x2xxyOmn1x2xxyOm1x2x象与轴有两个交点或相切于点,且两个交点或切点的横坐标都大于小于,它的图象有以下几种情形:(1)(2)(3)(4)由此可得出结论:方程的两个实根都属于区间的充要条件是:这里.同理可得出:3.二次方程的两个实根分别在区间的两侧(一根小于,另一根大于)的充要条件是:这里.4.二次方程的两个实根都在的右侧的充要条件是:二次方程的两个实根都在的左侧(两根都小于)的充要条件是:这里.二.例题选讲例1.设关于的方程R),(1)若方程有实数解,求实数b的取值范围;2xyOmn1x2xxyOmn21xxxyOmn1x2xxyOmn21xx(2)当方程有实数解时,讨论方程实根的个数,并求出方程的解。例2.已知二次函数f(x)=ax2+bx+c(a≠0).若方程f(x)=x无实根,求证:方程f[f(x)]=x也无实根.例3.设,,若,求实数的取值范围.变式:已知方程x2+(3m-1)x+(3m-2)=0的两个根都属于(-3,3),且其中至少有一个根小于1,求m的取值范围.例4.已知方程有两个负根,求的取值范围.例5.求实数的范围,使关于的方程.(1)有两个实根,且一个比2大,一个比2小.(2)有两个实根,且满足.(3)至少有一个正根.例6.已知关于x的二次方程x2+2mx+2m+1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围.(2)若方程两根均在区间(0,1)内,求m的范围.变式:已知方程2x2–2(2a-1)x+a+2=0的两个根在-3与3之间,求a的取值范围.例7.已知二次方程的两个根都小于1,求的取值范围.变式:如果二次函数y=mx2+(...