第7章SPSS的相关分析7.1相关分析概述7.1.1相关的基本概念1.函数关系和相关关系函数关系是指事物或现象之间存在着严格的依存关系,其主要特征是它的确定性,即对一个变量的每一个值,另一个变量都具有惟一确定的值与之相对应。变量之间的函数关系通常可以用函数式Y=f(x)确切地表示出来。例如,圆的周长C对于半径r的依存关系就是函数关系:C=2πr。相关关系反映出变量之间虽然相互影响,具有依存关系,但彼此之间是不能一一对应的。例如,学生成绩与其智力因素、各科学习成绩之间的关系、教育投资额与经济发展水平的关系、社会环境与人民健康的关系等等,都反映出客观现象中存在的相关关系。7.1相关分析概述2.相关关系的类型(1)根据相关程度的不同,相关关系可分为完全相关、不完全相关和无相关。(2)根据变量值变动方向的趋势,相关关系可分为正相关和负相关。(3)根据变量关系的形态,相关关系可分为直线相关和曲线相关。(4)根据研究变量的多少,可分为单相关、复相关。7.1.2相关分析1.相关分析的作用(1)判断变量之间有无联系(2)确定选择相关关系的表现形式及相关分析方法(3)把握相关关系的方向与密切程度(4)相关分析不但可以描述变量之间的关系状况,而且用来进行预测。(5)相关分析还可以用来评价测量量具的信度、效度以及项目的区分度等。7.1.2相关分析相关系数是在直线相关条件下,说明两个变量之间相关程度以及相关方向的统计分析指标。相关系数一般可以通过计算得到。作为样本相关系数,常用字母r表示;作为总体相关系数,常用字母ρ表示。相关系数的数值范围是介于–1与+1之间(即–1≤r≤1),常用小数形式表示,一般要取小数点后两位数字来表示,以便比较精确地描述其相关程度。两个变量之间的相关程度用相关系数r的绝对值表示,其绝对值越接近1,表明两个变量的相关程度越高;其绝对值越接近于0,表明两个变量相关程度越低。如果其绝对值等于零1,则表示两个变量完全直线相关。如果其绝对值为零,则表示两个变量完全不相关(不是直线相关)。2.相关系数7.1.2相关分析变量相关的方向通过相关系数r所具有的符号来表示,“+”号表示正相关,即0≤r≤1。“﹣”表示负相关,即0≥r≥﹣1。在使用相关系数时应该注意下面的几个问题。(1)相关系数只是一个比率值,并不具备与相关变量相同的测量单位。(2)相关系数r受变量取值区间大小及样本数目多少的影响比较大。(3)来自于不同群体且不同质的事物的相关系数不能进行比较。(4...