1.2.6分段函数[学习目标]1.能说出分段函数的定义.2.能根据题意用分段函数表示函数关系.3.会画出分段函数的图象.4.能求分段函数的函数值或由函数值求自变量的值.[知识链接]作函数的图象通常分三步,即列表、描点、连线.[预习导引]1.如果自变量在定义域的不同取值范围内时,函数由不同的解析式给出,这种函数叫作分段函数.2.分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的对应法则的函数.3.分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.4.作分段函数图象时,应分别作出每一段的图象.要点一分段函数求值例1已知函数f(x)=(1)求f(-5),f(-),f[f(-)]的值;(2)若f(a)=3,求实数a的值.解(1)由-5∈(-∞,-2],-∈(-2,2),-∈(-∞,-2],知f(-5)=-5+1=-4,f(-)=(-)2+2×(-)=3-2. f=-+1=-,而-2<-<2,∴f[f(-)]=f=2+2×=-3=-.(2)当a≤-2时,a+1=3,即a=2>-2,不合题意,舍去.当-2<a<2时,a2+2a=3,即a2+2a-3=0.所以(a-1)(a+3)=0,得a=1,或a=-3. 1∈(-2,2),-3∉(-2,2),∴a=1符合题意.当a≥2时,2a-1=3,即a=2符合题意.综上可得,当f(a)=3时,a=1,或a=2.规律方法1.分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求值.2.已知分段函数的函数值求相对应的自变量的值,可分段利用函数解析式求得自变量的值,但应注意检验分段解析式的适用范围;也可先判断每一段上的函数值的范围,确定解析式再求解.跟踪演练1已知函数f(x)=则f(2)等于()A.0B.C.1D.2答案C解析f(2)==1.要点二分段函数的图象及应用例2已知f(x)=(1)画出f(x)的图象;(2)求f(x)的定义域和值域.解(1)利用描点法,作出f(x)的图象,如图所示.(2)由条件知,函数f(x)的定义域为R.由图象知,当-1≤x≤1时,f(x)=x2的值域为[0,1],当x>1或x<-1时,f(x)=1,所以f(x)的值域为[0,1].规律方法1.分段函数的解析式因其特点可以分成两个或两个以上的不同解析式,所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也可以是一些孤立的点或几段线段,而分段函数的定义域与值域的最好求法也是“图象法”.2.对含有绝对值的函数,要作出其图象,首先根据绝对值的意义去掉绝对值符号,将函数转化为分段函数来画图象.3.画分段函数图象时还要注意端点是“实心点”还是“空心点”.跟踪演练2作...