1.2.2表示函数的方法[学习目标]1.掌握函数的三种表示方法:解析法、图象法、列表法.2.会根据不同的需要选择恰当方法表示函数.[知识链接]1.在平面上,两个点可以确定一条直线,因此作一次函数的图象时,只需找到两个点即可.2.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-,).3.函数y=x2-2x-3=(x+1)(x-3),所以函数与x轴的交点坐标为(-1,0),(3,0).[预习导引]1.表示函数的方法(1)把一个函数的对应法则和定义域交待清楚的办法,就是表示函数的方法;(2)表示函数的三种主要方法分别是:解析法、图象法和列表法.2.解析法(1)解析式:把常量和表示自变量的字母用一系列运算符号连接起来得到的式子,叫作解析式,也叫作解析表达式或函数关系式.(2)解析法就是用解析式来表示函数的方法.3.图象法函数图象的作图过程通常有列表、描点、连线三个步骤.要点一待定系数法求函数解析式例1(1)已知反比例函数f(x)满足f(3)=-6,求f(x)的解析式;(2)一次函数y=f(x),f(1)=1,f(-1)=-3,求f(3).解(1)设反比例函数f(x)=(k≠0),由f(3)==-6,解得k=-18,故f(x)=-.(2)设一次函数f(x)=ax+b(a≠0), f(1)=1,f(-1)=-3,∴解得∴f(x)=2x-1.∴f(3)=2×3-1=5.规律方法待定系数法求函数解析式的步骤如下:(1)设出所求函数含有待定系数的解析式.如一次函数解析式设为f(x)=ax+b(a≠0),反比例函数解析式设为f(x)=(k≠0),二次函数解析式设为f(x)=ax2+bx+c(a≠0).(2)把已知条件代入解析式,列出含待定系数的方程或方程组.(3)解方程或方程组,得到待定系数的值.(4)将所求待定系数的值代回原式.跟踪演练1已知二次函数f(x)满足f(0)=1,f(1)=2,f(2)=5,求该二次函数的解析式.解设二次函数的解析式为f(x)=ax2+bx+c(a≠0),由题意得解得故f(x)=x2+1.要点二换元法(或配凑法)求函数解析式例2求下列函数的解析式:(1)已知f=+,求f(x);(2)已知f(+1)=x+2,求f(x).解(1)方法一(换元法)令t==+1,有x=.则t≠1.把x=代入f=+,得f(t)=+=(t-1)2+1+(t-1)=t2-t+1.∴所求函数的解析式为f(x)=x2-x+1,(x≠1)方法二(配凑法) f=+=2-=2-+1,∴f(x)=x2-x+1.又 =+1≠1,∴所求函数的解析式为f(x)=x2-x+1(x≠1).(2)方法一(换元法)令+1=t(t≥1),则x=(t-1)2,∴f(t)=(t-1)2+2=t2-1.∴f(x)=x2-1(x≥1).方法二(配凑法) x+2=(+1)2-1,∴f(+1)=(+1)2-1.又 +1≥1,∴f(x)=...